

令和2年度 福島研究開発部門 成果報告会

燃料デブリは どのようにして形成されたか?

令和2年12月 5日

国立研究開発法人 日本原子力研究開発機構 福島研究開発部門 福島研究開発拠点 廃炉環境国際共同研究センター 炉内状況把握ディビジョン 試験技術開発グループ

永江 勇二

1. 福島第一原子力発電所(1F)2号機の内部調査 内部調査での堆積物の特徴

目次

- 2. 燃料デブリ形成メカニズムの解明
 - ・ 制御棒ブレード破損試験装置(LEISAN)の特徴
 - LEISAN試験での成果
 - 制御棒ブレード溶融・移行
 - 圧力容器下部での溶融・移行
- 3. 取り出したデブリの分析結果の評価に向けて
- 4.今後の計画

5.まとめ

➤ 1F2号機内部調査(TEPCO)*

2018年1月

カメラによる内部調査 ⇒ 金属系とみられる物質の堆積、半溶融の集合体部材を検出 2019年2月

堆積物への接触調査 ⇒ 3種類の堆積物(小石状、プレート状、半溶融物)を確認

▶「廃炉に向けた中長期ロードマップ」(2019年12月、改定) 2021年内より、燃料デブリの試験的取り出しを2号機から始める方針 炉内状況推定などから、燃料デブリは様々な形状で存在することが予想されている。

* 東京電力ホールディングス株式会社、福島第一原子力発電所2号機 原子炉格納容器内部調査 実施結果(速報)2018年1月19日 * 東京電力ホールディングス株式会社、福島第一原子力発電所2号機 原子炉格納容器内部調査 実施結果(速報)2019年2月13日

* 東京電力ホールディングス株式会社、「2号機原子炉格納容器内部調査実施結果」、第48回 廃棄・汚染水対策現地調整会議、2019年3月28日

燃料デブリの形成メカニズムの解明

炉心溶融、溶融物の下部への移行、閉塞、下部での再溶融、圧力容器の破損という 一連の現象について評価を行う必要がある。

酸化物(UO2など)よりも1000℃以上も低い温度で溶融する金属材が、多く使用 されている。

LEISAN装置の開発

LEISAN: Large-scale Equipment for Investigation of Severe Accidents in Nuclear reactors ※日本語名「制御棒ブレード破損試験装置」

画期的な性能をもつ装置

- ・急速昇温(0.3~1℃/秒) 炉心露出時の崩壊熱の違いによる、異なる昇温速度への対応
- ・軸方向温度勾配(約500℃/m) 下部に残る冷却水によって生じる、軸方向の温度勾配への対応
- ・水蒸気量可変 溶融物の閉塞状態などで異なる水蒸気量への対応
- ・ 動画撮影 溶融・移行・閉塞挙動に関わるリアルタイム情報の取得
- ・反応によって発生するガスなどの測定 溶融・移行・閉塞挙動における水素などのリアルタイム情報の取得
- ・実機とほぼ同寸法での試験体の使用 実際の溶融・移行・閉塞挙動を把握するため

カメラ カメラ 試験体 高温水蒸気

試験条件

動画撮影による制御棒ブレード溶融・移行

- 一部の制御棒ブレードは溶融(約1200℃)し、一部の 制御棒ブレードはその形状を残したまま下部へ落下
- 制御棒ブレード溶解物はチャンネルボックスと反応すること なく、下部へ液下
- 制御棒ブレード溶解物が、低温部(1200℃以下)で 固まり、冷却ガス流路を閉塞

酸化物	{	約2850℃ <mark>約2700℃</mark>		■ UO₂の融点 ■ ZrO₂の融点
金属		約1900℃ 約1850℃	_	■ Zr(O)/UO ₂ の共晶 ■ ジルカロイの融点
		約1450℃ 約1400℃	_	■ ステンレス鋼の融点 ■ インコネルの融点
		約1200℃	-	- ステンレス/B₄Cの共晶
		約920℃	-	- Zr/Ni、Zr/Feの共晶

金属系デブリの生成

<image/> <section-header></section-header>	 ・主成分は、ステンレス・ジルカロイ(酸化、 または部分酸化) ・残留B₄Cや燃料の一部が、内部に包ま れている可能性 ・破砕・粉体化しやすい可能性 ・のプレート状物質 ・主成分は、ステンレス(未酸化) ・残留B₄Cが内部にくるまれている可能性 ・Bの溶融により、<u>ステンレスが硬化</u>してい る可能性
<u>20 mm</u> 半溶融物質	O 半溶融の金属系物質 • チャンネルボックスなどの一部と推定
	● 残留B₄Cや燃料の一部が、内部に包ま

金属系デブリの生成挙動 (左図:模式図、右図:生成物の外観)

れている可能性

 化学活性が残留している可能性

溶融した状態で直接下部へ 落下し、冷えて凝固 したもの(岩状の堆積物)

溶融前の形のまま酸化し 下部へ崩落したもの (構造物の一部と推定され る堆積物)

チャンネルボックスに 付着凝固した小石状の 堆積物

*東京電力ホールディングス、福島第一原子力発電所 2号機 原子炉格納容器内部調査 実施結果(2019年2月28日)

LEISANに試験体を設置

金属物質の準備

試験条件

- 最高温度: 圧力容器材が溶けはじめる約1500℃
- 温度分布:圧力容器内外で約250℃
- 雰囲気: Arガス

金属デブリが堆積すると、酸化物デブリが溶融する温度より1000℃以上も低い温度で 局所的に溶融・反応で破損が起こる可能性が高い。

燃料デブリ堆積状況把握の高精度化

各相の量などの分析

例として、 燃料棒の溶融後のデブリ形成 急冷:単相 徐冷:2~3つの相(冷却速度に依存)

今後の計画

▶ 燃料デブリ性状把握の高精度化

- 1F2号機の内部調査から、燃料デブリは、燃料や燃料棒、炉内の構造物等が 混合して固まっている、複雑な形態であると推測される。
- 試験的に取り出した燃料デブリの分析データをもとに、
 - 燃料デブリ形成過程(局所領域での挙動)
 - 事故シナリオ(プラント全体での挙動)

を、総合的に評価することで、燃料デブリがたどってきた過程(温度履歴など)を 推測する。

これをもとにしたデブリ形成過程条件で、

• LEISAN等の試験装置により模擬物質を作製

燃料デブリの状態把握の高精度化を図り、取出し規模の拡大に向けた、取出し方法の検証・確認に資する。

LEISANは、従来試験装置にない画期的な性能を有しており、

- ▶ BWRを保有する国の研究機関等から研究協力の申し入れを受けている。
- ▶ 次世代研究者を中心とした国際研究者ネットワークの"ハブ"を富岡町に整備する ことにも取り組んでいく。

高温水蒸気雰囲気で、軸方向温度勾配をかけたまま急速昇温することで、溶融・移行・堆 積挙動を、試験中の映像で調べることができる、世界初の装置(LEISAN)開発に成功した。この装置は国際的に注目され、装置を利用した国際協力などを通じて、燃料デブリの形成メカニズム解明に挑んでいる。

まとめ

- これまでに、LEISAN試験で得られた金属系生成物と実堆積物の類似性から、実際の情報が少ない中で、2号機での金属系デブリ堆積を裏付ける知見を得た。
- 今後は、実デブリの形成過程の評価から、燃料デブリの状態把握を高精度化する計画である。
 この知見により、燃料デブリ取り出し規模の拡大に向けた、取り出し方法の検証・確認に貢献する。

多目的試験棟/CLADS