福島の環境回復と比放射能を用いた農作物中 放射性セシウムの高精度予測について F 祥文 福島大学環境放射能研究所 塚田 ・事故後の素早い状況把握と環境回復への取 り組み(空間線量率、土壌沈着と吸着、作 物移行など) ・被ばく線量の変遷 Eukushima チョルノービリ (n=4)・存在形態別比放射能を用いた高精度な作物 <u>中放射性Cs濃度の予測</u> 今後の取り組みに向けて

土壌中の動態や土壌から作物への放射性核種の移行を知るため には、先ず土壌における存在形態を理解する必要がある

未攪乱土壌における大気圏核実験由来の¹³⁷Csの深度分布 (2003年採取)

土壌粒子におけるセシウムの存在形態

被ばく経路

浪江町における外部・内部被ばく線量について

帰還困難区域

2023年3月:福島県全体の2.4% (約337 km²)

FDNPSからの距離(km): 浪江町役場(約8 km) 津島支所(約30 km) 2023年3月: 帰還困難区域(181 km² 81%)を除く避難指示の解除

居住者:約2200人(住民登録者の 約10%)

浪江町における2011年事故後の空間線量率

浪江町における追加となる外部被ばく線量の算出条件

 ・浪江町帰還区域内の16地点に設置されたモニタリングポストの空間線量 率の平均値;1.10 mSv/y

 ・バックグラウンドの線量率(0.19 mSv/y; Ogura et al., 2021)を除去 自然界に存在する天然放射性核種から受ける外部被ばく線量

 ・滞在時間:8時間を野外;16時間を室内

 ・木造家屋の低減係数:0.4

浪江町の年間外部被ばく線量(2020年): 0.61 mSv/y

大気中¹³⁷Cs濃度の経時変化

Kitayama et al., (2014), Kitayama et al., (2016), 広報なみえ等

福島県産作物中137Cs濃度と作物摂取による内部被ばく線量の変遷

数値は中央値を示す。ボックスは25~75%、ひげは最小値~最大値を示す。

令和6年度福島廃炉安全工学研究所成果報告会

浪江で採取した自家栽培作物と自生植物(山菜)の例

採取試料数	2019	2020	計
自家栽培作物	65	94	159
自生植物(山菜など)	10	12	22

全181試料

「「「」	英		
ジャガイモ	デル		ユズ ミョウガ
ハクサイ	カボチャ	インゲン豆	ギンナン フキノトウ
	自家栽培作物		自生植物

¹³⁷Cs濃度が10 Bq/kg 新鮮重量を超えた家庭菜園作物および自生植物

作物(2019年 n=13)		¹³⁷ Cs	作物(2020年 n=14)		¹³⁷ Cs
フキ	自生	98	タケノコ(真竹)	自生	175
ゆず	自生	85	たらの芽	自生	91
銀杏	自生	73	ゆず	自生	48
セリ	自生	69	わらび	自生	42
ふきのとう	自生	67	于茎	家庭菜園	26
芋がら	家庭菜園	46	アズキ	家庭菜園	23
みょうが(茎)	自生	41	小梅	自生	19
フキ	自生	26	菊いもの葉	家庭菜園	17
わらび	自生	24	ふき	自生	13
親孝行豆	家庭菜園	19	青うめ	自生	12
アズキ	家庭菜園	19	サトイモ	家庭菜園	11
ちぢみホウレンソウ	家庭菜園	14	スナップエンドウ	家庭菜園	11
サツマイモ	家庭菜園	11	小松菜	家庭菜園	11
			エダマメ	家庭菜園	10

2020年の浪江町における内部および外部被ばくの比較

被ば<線量 (mSv)					
	内部	被ばく (INT)	外部被ばく (EXT)	全被ばく 線量	内部被ばく の割合
成人 (男性)		0.032	0.61	0.64	0.05
	吸入 食物摂取				
	0.000050	0.012 (自生植物なし)			
		<mark>0.032</mark> (自生植物含む)			

内部被ばくは、外部被ばくに比べきわめて小さい

福島県における作物中放射性Cs低減化の対策

1. 表層土壌に蓄積した放射性Csの剥ぎ取り

2. カリウム肥料の追加散布

セシウムと性質が類似する同族元素であるカリウム(K)を土 壌管理に則して施用(拮抗作用による移行低減化)

作物が吸収する放射性セシウム(Cs)とカリウム(K)の関係

カリウム肥料施用(放射性Csとカリウムの拮抗作用)

これまでになかった世界で初めて示した作物に関 する基準 (25 mg K₂O/100 g) ↓ 確実な放射性セシウムの作物移行低減

なぜ作物中放射能濃度の予測が必要か?

¹³⁷Csと⁹⁰Srの汚染由来

調查地域	調査機関	試料地点	汚染 ¹³⁷ Cs	由来 ⁹⁰ Sr	汚染源からの 距離(km)	土壌の種類(試料数)
青森	1991- 1994	26	大気圏	核実験	-	Allophanic Andosols (9), Argic Red- Yellow soils (1), Brown Lowland soils (1), Gley Lowland soils (9), Lowland Paddy soils (1), Non-allophanic Andsols (2), Peat soils (3)
福島	2019	4	2011 FDNPS事故	大気圏核実験	12-84	Brown Lowland soils (1), Gley Lowland soils (2), Wet Andosols (1)
チョルノービリ	2018- 2019	4	1986ChNPP事故		2.4-14	Brown Forest soils (1), Sandy Regosols (3)

放射性核種の由来が異なる青森県、福島県とチョルノービリで 調査と研究を実施

東電福島第一原子力発電所からチョルノービリ原子力発電所

Vertical distributions of ¹³⁷Cs and ⁹⁰Sr in Chernobyl

Lollecting date : August 29-30, 2017

令和6年度福島廃炉安全工学研究所成果報告会

ジャガイモにおける交換態Kと¹³⁷Cs移行係数および交換態Caと ⁹⁰Sr移行係数の関係

	¹³⁷ Cs	⁹⁰ Sr			
移行係数の範囲	0.0015 – 0.79	0.023 - 0.51			
土壌 – ジャガイモ間の ¹³⁷ Csと ⁹⁰ Srの移行係数は、それぞれ交換態Kと Ca濃度の増加に伴い減少					

ジャガイモの¹³⁷Csと⁹⁰Sr濃度を高精度に予測するため、土壌の交換態画分中¹³⁷Cs/Csと⁹⁰Sr/Sr比放射能を適用する新たな方法

大気圏核実験や事故など様々な由来による137Csと90Sr降下物

交換態¹³⁷Cs/Csと⁹⁰Sr/Sr比放射能が、ジャガイモの比放射能と高い精度で一致 交換態とは:作物が吸収可能な画分

青森、福島およびチョルノービリで採取したジャガイモ中の137Csおよび90Sr

放射能濃度の予測値と測定値との関係

まとめ

- ✓ 交換態画分の¹³⁷Cs/Csと⁹⁰Sr/Sr比放射能は、ジャガイモの比放射 能と同様であった。
- ✓ KやCaなど施用などによる¹³⁷Csや⁹⁰Srの作物吸収への影響をキャン セルすることで、精度の高い予測が可能となった。
- ✓ ジャガイモの¹³⁷Csと⁹⁰Sr濃度を迅速かつ信頼性の高い予測が可能となった。

Activity concentration in potato (Bq kg^{-1} DW)

- = Specific activity ratio in exchangeable fraction (Bq mg $^{-1}$)
 - × Elemental concentration in potato (mg kg⁻¹ DW)

事故の際、作物摂取による正確な内部被ばく線量を評価することが可能

今後の取り組みに向けて(放射線に関する項目) -2011年の震災前と変わらぬ生活を送るために-

考慮事項
 ・土砂の流入 ・家庭菜園 ・森林の隣接など
・灌漑水 ・森林の隣接による腐植や土砂の流入
・土砂の流入 ・物流による系外への放射性物質の移動
・野生鳥獣、山菜など

モデルを活用した線量予測による不安払拭

