広域環境モニタリングのための航空機を 用いた放射性物質拡散状況調査

報告書

平成 24 年 6 月

独立行政法人 日本原子力研究開発機構

文部科学省の平成23年度放射能測定調査委託事業による委 託業務として、日本原子力研究開発機構が実施した平成23 年度「広域環境モニタリングのための航空機を用いた放射 性物質拡散状況調査」の成果を取りまとめたものである。

1. はじめに	
2. 航空機モニタリングの経緯	
3. 航空機モニタリングシステム	7
3.1 MEXT システム	7
3.2 NUSTEC システム	
3.3 OYO システム	
3.4 FUGRO システム	
3.5 システムの比較	
3.5.1 点線源によるレスポンス確認	
3.5.2 リファレンスライン	
3.6 計算コードによる MEXT システム特性評価	
4. データ採取及び解析方法	
4.1 事前確認	
4.1.1 検出器の健全性確認	
4.1.2 機体の汚染確認	
4.1.3 ヘリコプタの機底の遮蔽	
4.2 データ採取方法	
4.2.1 ヘリコプタの選定	
4.2.2 フライト方法	
4.2.3 テストライン	
4.2.4 結果の妥当性確認のための地上測定	
4.3 解析方法	
4.3.1 線量換算係数(CD)	
4.3.2 空気減弱係数(AF)	
4.3.3 線量率-放射能換算係数	
4.3.4 バックグラウンドの減算方法	
4.3.4.1 BG-index	
4.3.4.2 Cs-index	40
4.3.5 海抜高度による宇宙線の影響	
4.3.6 Rn 子孫核種の影響	
4.3.7 減衰補正	
4.3.8 検出下限値及び信頼性	
4.3.9 全線量率の検出下限	
4.3.10 全線量率換算の不確かさ	45
4.3.11 放射性 Cs の沈着量の検出下限	
4.3.12 放射性 Cs の沈着量の不確かさ	
4.4 マッピング方法	

4.4.1 補間方法	
4.4.2 他の補間法との比較	
5. 結果	
5.1 線量率マップ	
5.2 放射性 Cs の沈着量マップ	
6. 考察	
6.1 地上の測定結果との比較	
6.2 測定時期における比較	
6.3 三次元マップ	
6.4 海抜高度と放射性物質の分布	63
6.5 降雪の影響	
6.6 地質図との比較	
6.6.1 北海道	
6.6.2 東北地方	
6.6.3 関東地方	
6.6.4 中部地方	75
6.6.5 近畿地方	77
6.6.6 中国地方	79
6.6.7 四国地方	
6.6.8 九州地方	
6.6.9 南西諸島	
6.6.10 地質図との対比のまとめ	
7. まとめ	
謝辞	
参考文献	
Appendix 1 航空機モニタリング検討委員会	
Appendix 2 テストラインデータ	
Appendix 3 BG-index 及び Cs-index	
Appendix 4 In-situ Ge 測定データ	
Appendix 5 県別の線量率及び放射性 Cs の沈着量マッ	プ

1. Introduction	1
2. Progress of AMS	2
3. AMS system	7
3.1 MEXT system	7
3.2 NUSTEC system	9
3.3 OYO system	
3.4 FUGRO system	
3.5 Comparison of system	
3.5.1 Response of system by the point source	
3.5.2 Reference line	14
3.6 Radiological characterization of MEXT system by the calculation co	de17
4. Data acquisition and analysis method	
4.1 Preliminary survey	
4.1.1 Detector adjustment	
4.1.2 Self contamination of the helicopter	
4.1.3 Shielding effect of the bottom of the helicopter	20
4.2 Data acquisition	
4.2.1 Selection of the helicopter	
4.2.2 Flight condition	
4.2.3 Test line	
4.2.4 Ground survey for validity of the AMS result	
4.3 Analysis method	
4.3.1 Conversion factor of dose rate (CD)	
4.3.2 Attenuation factor (AF)	
4.3.3 Conversion factor from dose rate to radiocesium deposition	
4.3.4 Discrimination of natural nuclide	
4.3.4.1 BG-index	
4.3.4.2 Cs-index	40
4.3.5 Influence of cosmic rays by the height above the sea level altitude.	41
4.3.6 Influence of the Rn progeny	41
4.3.7 Decay correction	
4.3.8 Detection limit and reliability	44
4.3.9 Detection limit of dose rate	44
4.3.10 Uncertainty of dose rate conversion	
4.3.11 Detection limit of radiocesium deposition	47
4.3.12 Uncertainty of radiocesium deposition	47
4.4 Mapping method	

Contents

4.4.1 Interpolation method	
4.4.2 Comparison with other interpolation methods	
5. Result	
5.1 Map of dose rate	
5.2 Map of radiocesium doposition	
6. Consideration	
6.1 Comparison with the ground survey	57
6.2 Comparison in the measurement date	59
6.3 3D map	
6.4 Height above the sea level altitude and radiological distribution	63
6.5 Influence of the snow	65
6.6 Comparison with the geologic map	66
6.6.1 Hokkaido	67
6.6.2 Tohoku	70
6.6.3 Kanto	73
6.6.4 Chubu	75
6.6.5 Kinki	77
6.6.6 Chugoku	79
6.6.7 Shikoku	
6.6.8 Kyusyu	
6.6.9 Nansei-shoto	
6.6.10 Summary of comparison with the geologic map	
7. Summary	
Acknowledgment	
Reference	
Appendix 1 Committee of AMS	
Appendix 2 Data of test-line	
Appendix 3 BG-index and Cs-index	
Appendix 4 Data of In-situ Ge	
Appendix 5 Map of the dose rate and the radiocesium at each prefecture	

Table List

Table 2-1	Aerial monitoring schedule	
Table 2-2	Detail schedule of Aerial monitoring	4
Table 3-1	Specification of 4 ARMS	7
Table 3-2	Response of ARMS by ¹³⁷ Cs point source	12
Table 3-3	Response of ARMS at reference line	14
Table 3-4	Ratio of Peak and Compton of ARMS at reference line	16
Table 4-1	Shielding factor of helicopter	21
Table 4-2	Photo of helicopter	23
Table 4-3	Summary of CD and AF	
Table 4-4	CD and AF in east Japan	
Table 4-5	CD and AF in west Japan	
Table 4-6	Limit of detection of ARMS	45
Table 4-7	Dispersion of CD and AF	46
Table 4-8	Number of measurement point	51
Table 6-1	Analysis condition of in ambient Fukushima Dai-ichi NPP	60

Figure List

Fig. 3-1	Block diagram of MEXT system	8
Fig. 3-2	Block diagram of NUSTEC system	9
Fig. 3-3	Block diagram of OYO system	10
Fig. 3-4	Block diagram of FUGRO system	11
Fig. 3-5	Counting loss of NUSTEC and MEXT-1 system	13
Fig. 3-6	Spectrum of MEXT-1 using ¹³⁷ Cs source	13
Fig. 3-7	Distance between detectors and ¹³⁷ Cs source (MEXT-1)	13
Fig. 3-8	Distance between detectors and ¹³⁷ Cs source (MEXT-2)	14
Fig. 3-9	Distance between detectors and ¹³⁷ Cs source (MEXT-3)	14
Fig. 3-10	Sukagawa reference line	15
Fig. 3-11	Utsunomiya reference line	15
Fig. 3-12	Count rate of Sukagawa reference line	15
Fig. 3-13	Count rate of Utsunomiya reference line	15
Fig. 3-14	Gamma spectra of ARMS on the reference line (Sukagawa)	15
Fig. 3-15	Model of MEXT system	17
Fig. 3-16	Simulated spectrum of ¹³⁷ Cs point source	
Fig. 3-17	Energy response of MEXT system using EGS5	18
Fig. 3-18	Distribution of angular response of MEXT system using EGS5	
Fig. 3-19	Ratio of count rate at 300 m above the ground	18
Fig. 4-1	System check of MEXT-1	19
Fig. 4-2	Decontamination of helicopter	20
Fig. 4-3	Shielding by fuel tank in BK117	20
Fig. 4-4	Angler response of MEXT-1 in Hericopter	20
Fig. 4-5	Angler response of MEXT (Bell412)	21
Fig. 4-6	Angler response of MEXT (Bell430, S76)	21
Fig. 4-7	Example of flight plan	26
Fig. 4-8	Image of test-line flight	27
Fig. 4-9	Dose rate of test-line	
Fig. 4-10	Analysis flow of ARMS in west japan	29
Fig. 4-11	Analysis flow of ARMS in east japan	
Fig. 4-12	Simulated attenuation factor using EGS5 (Source radius: 1000 m)	34
Fig. 4-13	Example for attenuation factor by hovering	35
Fig. 4-14	Example for attenuation factor	35
Fig. 4-15	Spectrum area for BG-index and Cs-index	
Fig. 4-16	Background dose rate using NaI survey meter (2005-2009) ¹²⁾	
Fig. 4-17	Histogram of BG-index at MEXT-2	
Fig. 4-18	Comparison with all count rate and >1,400 keV count rate at MEXT-2	

Fig. 4-19	Histogram of BG-index at MEXT-3	40
Fig. 4-20	Histogram of BG-index at OYO	40
Fig. 4-21	Example for Cs-index in MEXT-1	40
Fig. 4-22	Example for histogram of Cs-index in MEXT-1	41
Fig. 4-23	Count rate of cosmic-ray above sea	41
Fig. 4-24	Count rate of Rn-progeny above sea	42
Fig. 4-25	CF in β (g/cm ²) ⁸⁾	43
Fig. 4-26	¹³⁴ Cs/ ¹³⁷ Cs and A	43
Fig. 4-27	Value of BG _{self} each prefecture	45
Fig. 4-28	Relationship of AF and altitude	46
Fig. 4-29	Detection limit of radiocesium count rate	47
Fig. 4-30	Detection limit of radiocesium deposition (kBq/m ²)	47
Fig. 4-31	Methods of mapping	48
Fig. 4-32	Parameter of IDW method	49
Fig. 4-33	Comparison of map by approximate interpolation method	50
Fig. 5-1	Dose rate of Japan (This result includes the influence of natural radioactive nuclides.)53
Fig. 5-2	Deposition of ¹³⁴ Cs in Japan	54
Fig. 5-3	Deposition of ¹³⁷ Cs in Japan	55
Fig. 5-4	Deposition of ¹³⁴ Cs+ ¹³⁷ Cs in Japan	56
Fig. 6-1	Comparison of ARMS and ground survey	57
Fig. 6-2	Comparison of ARMS and In-situ Ge measurement	58
Fig. 6-3	Comparison of summer 2011 and spring 2012 in ambient Fukushima Dai-ichi NPP	59
Fig. 6-4	Histogram of summer 2011 and spring 2012 in North Ibaraki	60
Fig. 6-5	Comparison of 4 th /3 rd in Fukushima (inside 80km from Fukushima Dai-ichi NPP)	61
Fig. 6-6	Histogram of 3 rd /4 th in Fukushima (inside 80km from Fukushima Dai-ichi NPP)	61
Fig. 6-7	Examples of 3D map	62
Fig. 6-8	Distribution of radiocesium inventory each altitude 20 m	63
Fig. 6-9	Distribution map of the radiocesium at an altitude above sea	64
Fig. 6-10	Ratio map of 2012 / 2011 results in ambient Fukushima Dai-ichi NPP	65
Fig. 6-11	Contrast with a geologic map (Hokkaido)	69
Fig. 6-12	Contrast with a geologic map (Tohoku)	72
Fig. 6-13	Contrast with a geologic map (Kanto)	74
Fig. 6-14	Contrast with a geologic map (Chubu)	76
Fig. 6-15	Contrast with a geologic map (Kinki)	78
Fig. 6-16	Contrast with a geologic map (Chugoku)	81
Fig. 6-17	Contrast with a geologic map (Shikoku)	83
Fig. 6-18	Contrast with a geologic map (Kyusyu)	86
Fig. 6-19	Contrast with a geologic map (Nansei-Shotou)	88