

キャンベラISOCS技術の現場への適用と フレコンバック除染廃棄物の放射能精密定量

第186委員会 フォーラム福島 平成28年7月5日

キャンベラジャパン株式会社 カスタムソリューション事業部 ソリューションマネージャー

鈴木敦雄(博士(工学))

トISOCSとは

▶ISOCSの適用例

◆海外での適用例

◆国内での適用例(福島原発事故以降)

▶フレコンバック除染廃棄物の精密定量

◆実証試験の方法

◆実証試験の結果

◆考察

▶まとめと今後の課題

ISOCSとは 線源不要の効率校正ソフトウェア

ISOCS[™] In Situ Object Counting System

ISOCS/LabSOCSの特徴 (数値計算で測定器の効率校正を実施)

- ISOCS : In-Situ Object Calibration Software
- LabSOCS : Laboratory Source-less Calibration Software
- 検出器の特性化:(検出器周辺の空間を効率校正)
 - ◆ 検出器の周辺に標準線源を設置
 - ◆ <u>標準線源の実測に基づき、</u>MCNP効率シミュレーション
 - ◆ 検出器周辺の空間効率マップを作成

▶ 測定試料の効率:

- ◆ 空間効率マップ上に、ISOCSテンプレートに沿って被測定試料を配置
- ◆ 被測定試料を数十~数万の微小体積(ボクセル)に分割(自動計算)
- ◆ 個々のボクセルから検出器に入射する放射線の効率を積算(自動計算)
- ◆ 数秒~数十秒で任意の形状・サイズの効率作成が完了

検出器特性化

- ▶ 各検出器に対して行われる
- NIST(米国国立標準研究所)
 混合線源を使用
- ▶ 7ヶ所で測定
- 線源測定に基づき、検出器の
 MCNPモデルを作成し検証
- 検証されたMCNPモデルを
 空間効率に拡大
 - ◆ 0から500mの距離
 - ◆ 全方向
 - 10keV-7000keV
- ▶ NIST標準線源とのトレーサビリティ
- 試料効率を作成するための 検出器特性化ファイル作成

検出器の特性化

▶ 各々の結晶についてMCNPを用いて効率レスポンス関数を導出し特性化する。

8

ISOCS 効率計算ソフトウェア

N ボクセル、ε^{νac} 減弱効率、W 加重係数、μ 減弱係数、T 吸収体の厚み、i ボクセル 数、j エネルギー、k 経路中の物質の種類

数値計算法(ISOCS)、MCNP、標準線源法による 効率の比較・不確かさ

MIRION

Π

ISOCSの世界での適用①

様々なin-situ測定

ISOCSの世界での適用② 世界中のD&Dの現場

- ▶ 特性評価の例
 - ◆ マルクール地区での換気ダクトの測定 (CEA – フランス)

◆ ティアンジュ3発電所におけるSG取 替での測定サービス(ベルギー)

ISOCSの日本での適用① 福島原子カ発電所事故以降

▶フードセーフ 30kgの米袋のスクリーニングに使用 ホールボディカウンタと同じ超大型Nal検出器を使用し、迅速なスクリーニ ングが可能

測定対象	30kg米袋		
検出器	3×5×16インチ超大型Nal		
効率校正	ISOCSによる数値計算と標準線源による校正確認		
測定時間	10秒以内(100Bq/kg仕分け)		
検出限界	25Bq/kg以下		
測定精度	スクリーニングレベル60Bq/kg以上		
遮蔽体	鉄10センチ厚		
重量等	100H×320L×140Wcm 約2500kg		

ISOCSの日本での適用②

福島原子力発電所事故以降

▶あんぽ柿セーフ あんぽ柿のスクリーニングに使用 あんぽ柿トレーに対し、専用設計の直方体Nal結晶を用いて最適な検出効率

• あんぽ柿をトレーごと非破壊検査が可能

測定対象	あんぽ柿(蜂屋柿、平核無柿トレー)
検出器	3×4×2インチNal32個(1トレーあたり4個)
効率校正	ISOCSによる数値計算と標準線源による校正確
	認
測定時間	80秒程度
検出限界	25Bq/kg以下
測定精度	スクリーニングレベル70Bq/kg以上
遮蔽体	鉄10センチ厚
重量等	143H×90L×110Wcm 約4500kg

ISOCSの日本での適用③ 福島原子力発電所事故以降

▶フレコン濃度測定車 ラップサイレージやフレコンバックの測定

測定対象	ラップサイレージ、フレコンバックに詰めた 除染廃棄物、米、木材チップ等
検出器	3×5×16インチ超大型Nal(LED温度補償 タイプ)
効率校正	ISOCSによる数値計算と標準線源による校 正確認
測定時間	30~60秒(30Bq/kg仕分け) 2~3秒(8000Bq/kg仕分け)
検出限界目安	15Bq/kg以下(30秒測定)
測定精度	1σ:約20%(実証試験)
遮蔽体	鉄15センチ厚以上

ISOCSの日本での適用④

福島原子力発電所事故以降

TRUCKSCAN

フレコンバック等の測定 (特許番号:5926362号)

測定対象	トラック荷台に積載されたフレコン
	バック除染廃棄物等
长山四	コリメータ付3×3インチNal検出器
快山岙	8個(LED温度補償タイプ)
	SuperISOCSによる数値計算と標準
	線源による校正確認
	(フレコンの積載状況により測定前
	<u>にその都度校正)</u>
測定時間	30秒(8000Bq/kg仕分け)
検出限界目安	数百Bq/kg(30秒測定)
測定精度	1 σ:20%以内(実証試験)

ISOCSの日本での適用⑤ 福島原子力発電所事故以降

▶池底モニター 防火水槽やため池底土の測定

▶フレコンバック単体測定装置 フレコンバックの非破袋測定

フレコンバック除染廃棄物の精密定量

▶ フレコンバック除染廃棄物の濃度測定法

- ◆ サーベイメータ法(除染ガイドライン)
- ◆ サンプリング法
- ◆In-situ法(現場測定法)
 - などがある
- ▶ 精密測定のために
 - ◆ それぞれの測定法における測定に必要な誤差要素の把握 なかでも
 - ◆フレコンバックの特性(不均一性等)の把握が極めて重要

フレコンバック除染廃棄物の精密定量 ▶相対合成標準不確かさを構成する要素

フレコンバック除染廃棄物の精密定量

▶ サーベイメータ法

表面線量を測定し、換算係数を使用して濃度換算

▶ 利点

◆ 簡便、機動性大

▶ 欠点

◆ 測定場所によってばらつき大 (内容物が不均一の影響大)

◆ 簡便だが過大評価(2~12倍の実績もあり)

◆ 測定者の被ばく

◆ 周囲(バックグラウンド)の影響大

◆ 自然放射性核種
 (カリウム、U系列、Th系列核種)の影響

- サンプリング法 フレコンバックからコア抜き等でサンプリングし、ラボでGe等を用いて測定
- ▶ 利点

Π

MIRION

- ◆個々のサンプリングの測定は 非常に精度が高い
- ▶ 欠点
 - ◆内部不均一の影響が甚大
 (試料採取誤差が極めて大きい)
 - ◆ 測定に時間がかかる
 - ◆精度を向上させるためには、 大量のサンプリングが必要

▶ In-situ法

MIRION TECHNOLOGIES

Ge検出器等を用いて現場で測定

▶ 利点

Π

◆基本的に精度の高い測定が可能

◆ 測定時間が短い

▶ 欠点

- ◆標準線源を使用した通常の
 効率校正が困難
- → ISOCSで克服可能

フレコンバック除染廃棄物の精密定量

▶ 測定精度検証

- ◆ 複数のサイトで、複数のフレコンバックを選定
- ◆ 必要に応じ人エフレコンを作成(均一、不均一等)
- ◆それぞれの測定法で測定し、結果を相互比較

▶フレコンバック除染廃棄物の物理的特性の把握

◆相対合成標準不確かさを構成する誤差要素を確認

▶ 最適な測定方法

- ◆相対合成標準不確かさを最適化
- ◆ 適正な処理量を担保

フレコンバック除染廃棄物の精密定量

▶ サンプリング法の測定手法

- ◆ 複数のサイトで、複数のフレコンバックを選定
- ◆サンプル数:10~20個サンプル/1フレコン
- ◆ サンプル量:1個当たり、500g程度
- ◆検出器:Ge検出器
- ◆ 効率校正: ISOCS及び標準線源
- ◆測定時間:数分(計数誤差が概ね5%以内になる時間)
- ◆ 平均値と標準偏差を確認
- ◆相対合成標準不確かさを確認

フレコンバック除染廃棄物の精密定量

▶ サンプリング法の測定結果(一例)

◆複数のサイトで、複数のフレコンバックを選定(自然状態:20試料採取)

	Total-Cs			ばらつき1σ	
	平均	最小	最大	数值	%
サンプル1	15100	12200	17400	1500	9.9%
サンプル2	4520	2790	9740	1740	38.5%
その他10サンプル	2700-11000				3.9 - 30.7%
平均					16.6%

▶個々の測定は高精度だが、ばらつきは非常に大きい

フレコンバック除染廃棄物の精密定量

▶ In-situ法の結果

- ◆測定器:コリメータ付Ge検出器
- ◆ 効率校正:キャンベラ製ISOCS
- ◆ 複数のサイトで、複数のフレコンバックを選定
- ◆フレコン1袋あたり、1方向、2方向、4方向、回転測定
- ◆フレコンー検出器間は適度な距離を取る
- ◆ 測定時間は、計数誤差が十分小さくなる時間(目安5%以内)

◆ Ge検出器で測定

- ◆ 平均値と標準偏差を確認
- ◆ 相対合成標準不確かさを確認

フレコンバック除染廃棄物の精密定量 ▶ In-situ法の結果(一例:サイトA)

	Total-Cs				ばらつき1σ	
	平均	最小	最大	数値	%	
サンプル1	13400	12900	14300	800	6.0%	
サンプル2	4130	3270	5060	760	18.5%	
その他12サンプル	2100-12800				2.4 - 13.1%	
平均					6.9%	

▶ばらつき1o:4方向測定の標準偏差

フレコンバック除染廃棄物の精密定量

▶ In-situ法の結果(一例:サイトB)

		Total-Cs		ばら	つき1σ
	サンプル数	最小~最大	平均	%(範囲)	%(平均)
土壌	51	2590-24400	19200	1.4-18.5	6.0
可燃物	16	330-4030	1920	2.7-20.0	9.6
高濃度汚染物	2	142000-228000	185000	5.5-13.2	9.4

▶ばらつき1g:4方向測定の標準偏差

フレコンバック除染廃棄物の精密定量 ▶サンプリング法とIn-situ法の結果比較(14フレコン)

ばらつき1g: 2.9 – 18.5% 平均6.9% (in-situ)

: 3.9-38.5% 平均16.6%(Sampling)

フレコンバック除染廃棄物の精密定量

▶ サンプリング法 VS In-situ法(まとめ)

◆測定値の平均:同等(相関式 y=1.046x, R²=0.930)

◆ 濃度偏在の影響	
サンプリング法	: 約20% ^{※1}
in-situ測定	:7%程度
◆ 相対合成標準不確	かさ
サンプリング法	:20%以上(25%程度が多い)
in-situ測定	:10%程度 ^{※2}

- ※1 サンプリング数が10~20体の場合
 - (サンプリング数が数体の場合は更に大きい)
- ※2 効率校正を適切に行った場合

フレコンバック除染廃棄物の精密定量

▶ サーベイメータ法の結果(一例:サイトB)

- ◆測定器:日立アロカ製 Nalサーベイメータ(コリメータ使用)
- ◆測定場:遮蔽土のう積み上げ、遮蔽鉄板敷設、低BG化

可能な限り理想的な測定場とする

- ◆ 測定時間:1箇所当たり、値が安定するまで2分程度待機
- ◆濃度換算:5箇所の測定結果を平均し、除染ガイドラインに記載の 方法で係数を乗じて算出

◆ 試料数:51試料

◆ In-situ測定の結果と比較

フレコンバック除染廃棄物の精密定量

▶ サーベイメータ法の結果(in-situ測定結果と比較:51試料)

フレコンバック除染廃棄物の精密定量

各測定手法の精度比較

相対合成標準不確かさの算出(単位%)

てゆふとの声言	In-situ法	サンプリング法		サーベイメータ法	
个唯からの安系		10-20試料	3試料	5箇所平均	1箇所
フレコン内の濃度偏在	7.6	16.6	25	9.4	20
効率校正	5	5	5	10	10
測定(計数誤差)	3	5	5	10	10
バイアス	なし	なし	なし	2倍以上	2倍以上
相対合成標準不確かさ	9.6	18	26	17	25

※1 in-situ法は4方向測定の1o

サンプリング法は、採取数(12又は20)の各測定の1σ

サーベイメータ法は、測定(4回又は5回)の各測定の1σ

▶ まとめ

▶ In-situ法の測定の最適化

◆ 測定時間

◆4方向、2方向、1方向、回転法による測定結果のばらつき(サイトAにおける事例紹介)

◆ En数で判定(サンプリング法との比較)

		En数1o ^{※1}			
測定法	評価試料数	(範囲)	(平均)		
1方向測定	14	0.01-0.98	0.41		
2方向測定	14	0.06-0.74	0.41		
4方向測定	14	0.10-0.61	0.37		
回転測定	14	0.14-0.60	0.35		

 ◆ 測定時間[8000(3000)Bq/kgのスクリーニング] Nal(1個):5秒程度(15秒程度) Ge(1個):20秒程度(40秒程度)
 ※ 周辺BG等の影響により値は変動する

▶ サンプリング法の測定の最適化(1tフレコンの場合)

◆ フレコン内の不均一の影響を最小限にする

→ 採取量、採取場所を最適化する必要あり

サンプリング誤差評価2

▶ サーベイメータ法の最適化

◆測定場のBGを低減

- ◆ コリメータを使用
- ◆測定時間を長く取る
- ◆測定場所を増やす
- ▶ それでも限界はある

まとめと今後の課題

▶ フレコンバックの精密定量

◆ In-situ測定が最適

但し

- ◆ 適切な測定時間
- ◆測定器一測定試料間距離
- ◆回転や複数方向測定
- ◆ 適切な効率校正

が必須

◆相対合成不確かさ:概ね10%程度

▶ サンプリング測定

- ◆ サンプリング誤差の影響が甚大
- ◆濃度決定に注意が必要
- ◆相対合成不確かさ:20%程度(サンプル数10個程度の時)

ご静聴ありがとうございました