

# 茨城周辺海域海底土中放射性核種濃度の経年変化



永岡美佳、藤田博喜、横山裕也、松原菜摘、中野政尚 核燃料サイクル工学研究所放射線管理部

茨城県沿岸で51地点の海底土を採取し、それらに含まれる 放射性核種(134Cs、137Cs、90Sr、Pu 同位体) 濃度を調査した。

| Sampling<br>year      | <sup>134</sup> Cs<br>(Bq/kg•dry) | <sup>137</sup> Cs<br>(Bq/kg•dry) | <sup>134</sup> Cs/ <sup>137</sup> Cs | <sup>90</sup> Sr<br>(Bq/kg•dry) | <sup>90</sup> Sr/ <sup>137</sup> Cs | <sup>239,240</sup> Pu* <sup>1</sup><br>(Bq/kg•dry) |
|-----------------------|----------------------------------|----------------------------------|--------------------------------------|---------------------------------|-------------------------------------|----------------------------------------------------|
| 2012                  | 3.8~206.7                        | 6.1 <b>~</b> 296.0               | 0.48~0.77                            | DL*3~0.26                       | 0.00044 <b>~</b><br>0.0025          | 0.18~0.63                                          |
| 2013                  | 1.1~44.4                         | 3.6 <b>~</b> 92.7                | 0.31~0.55                            | DL*3~0.26                       | 0.0012 <b>~</b><br>0.0016           | No data                                            |
| 2014                  | 0.8~34.9                         | 2.6 <b>~</b> 97.3                | 0.24~0.53                            | No data                         | _                                   | No data                                            |
| before the accident*2 | ND*4(<1)                         | ND*4(<0.8)<br>~1.0               | _                                    | ND*4(<0.08)<br>~0.13            | _                                   | 0.080~0.90                                         |

- \*1 <sup>238</sup>Pu/<sup>239,240</sup>Pu:0.019(グローバルフォールアウト値:0.020<sup>※1</sup>) \*2 JAEA-Review2014-042における平常の変動幅(2001年度~2010年度)
- \*3 DL:3σ \*4 ND:Not detected
- ※1 UNSCEAR 1982 Reports (1982)から計算した2012年時点の値

137Cs 濃度は、減少傾向にあった。また、137Cs 濃度の高い地点におけ る<sup>90</sup>Sr 及びPu 分析を行った。 <sup>90</sup>Sr 濃度の原発事故による影響は<sup>134</sup>Cs及 び137Cs濃度に比べて小さいと推測された。また、Puはその濃度がとて も小さく、本研究では原発事故の影響は認められなかった。

2011年3月11日東京電力(株)福島第一原子力 発電所事故(以下、「原発事故」と言う)によって放 出された放射性物質の海洋環境への影響は、国、 地方自治体等によるモニタリングで調査されている ※2。放射線管理部においても、原発事故前から継 続して、茨城県沿岸の海底土、海水、海産生物等 に含まれる放射能調査を行っており、これらの結果 で原発事故の影響を確認している※3。このため、原 発事故による海洋への影響を詳細に把握すること を目的に、茨城県沿岸で51地点の海底土を採取し、 それらに含まれる放射性核種濃度を調査した。



(google マップより)

# 探取地点

### 【採取地点】

- □ 採取地域: 茨城県北茨城市沖から大洗町沖の南北約50km沖合約20km
- □ 採取地点数:51地点
- □ 採取期間:2012年5月~7月(全6日間)、2013年6月~7月(全6日間) 2014年5月~7月(全6日間)
- □ 採取方法:原子力機構所有のモニタリング船「せいかい」で、 スミス・マッキンタイヤ型採泥器(表層0-20cm)及び カンナ型ドレッジ(表層0-10cm)により実施







モニタリング船 「せいかい」



## 測定方法

### 【測定方法】

- □ 前処理:105°Cで3日間乾燥→篩い分けし、2mm以下とした。
- ロ γ線核種分析(134Cs、137Cs): Ge半導体検出器で1万秒測定。
- □ 90Sr分析及びPu(239,240Pu及び238Pu)分析:

137Cs濃度の高い地点の海底土について分析を実施。

これらの分析は、文部科学省の放射能測定法シリーズ※4に準拠した。 90Sr分析: 100gの試料をイオン交換法で分析し、

90Yをガスフローカウンターで500分測定し、90Sr 濃度を求めた。

Pu分析:50gの試料をイオン交換法で精製後、Si半導体検出器で

8万秒測定。

## 結果と考察

### 【海底土中<sup>137</sup>Cs濃度分布(茨城県沿岸)】



- □ 3年間で<sup>137</sup>Cs濃度は、全体的に減少傾向にある。
- □ 一部変化が見られない地点もあり、地形等によるものと推定される。

### 【海底土中<sup>137</sup>Cs濃度分布(久慈川河口域)】



□ 3年間で<sup>137</sup>Cs濃度は、全体的に減少傾向にある。

### 【海底土中<sup>137</sup>Cs濃度と<sup>90</sup>Sr濃度との相関】



■ 原発事故の茨城県沿岸への影響を調査した。 <sup>134</sup>Cs、<sup>137</sup>Cs濃度:原発事故の影響が確認された。

濃度は、3年間で減少傾向にあった。

90Sr濃度:原発事故の影響はCs濃度に比べて小さいと推測された。 Pu:原発事故の影響は確認できなかった。

- 3年間で、Cs濃度は減少傾向にあるものの、一部変化がみられない地 点もあり、地形等によるものと推測された。
- 本結果からは、137Cs濃度と90Sr濃度との相関は見られなかった。
- 原発事故影響の把握のために、北茨城海域のモニタリングを継続す る必要がある。

## これまでの成果

- □ 永岡美佳 他, 茨城県近海海底土中放射性セシウムの詳細分布調査, 日本保健物理学会第46回研究発表会 (2013). □ Nagaoka, M. et al., Distribution of radionuclides in seabed sediments off Ibaraki coast after the Fukushima
- Daiichi Nuclear Power Plant accident, APSORC13 (2013). □ 永岡 美佳 他, 茨城近海海底土中の放射性核種の詳細分布調査, 第15回「環境放射能研究会」(2014). □ Nagaoka, M. et al., Spatial distribution of radionuclides in seabed sediments off Ibaraki coast after the
- Fukushima Daiichi Nuclear Power Plant accident, J. Radioanal. Nucl. Chem., DOI 10.1007/s10967-014-3633-9 (2015).
- □ 永岡 美佳 他, 茨城周辺海域海底土における放射性核種濃度の詳細調査, 第16回「環境放射能研究会」(2015).

# 参考文献

- \*1. UNSCEAR 1982 Reports (1982) IONIZING RADIATION: SOURCES AND BIOLOGICAL EFFECTS, Scientific Committee on the Effects of Atomic Radiation. United Nations, New York.
- <sub>\*\*</sub>2. NRA, Monitoring information of environmental radioactivity level, http://radioactivity.nsr.go.jp/ja/list/458/list-1.html.
- ※3. 東海再処理施設周辺の環境放射線モニタリング結果 2013年度, JAEA Review 2014-042 (2014).
- \*4. MEXT, http://www.kankyo-hoshano.go.jp/series/pdf\_series\_index.html.