事故から4年を経て、私たちはどのような放射線計測を 行い、これからどのように進めていこうとしているのか ーサイトの現場よりー

鈴木敏和

(株) 千代田テクノル
技術アドバイサー
東京電力株式会社
技術アドバイサー

2015.07.14 放射線計測フォーラム

廃止措置に向けて

- ・4号機使用済み燃料プールから核燃料取り出し完了
- ・汚染水(RO濃縮塩水)の処理完了、 フランジ型汚染水タンクの解体開始
- ・海水配管トレンチ内の汚染水除去
- ・敷地境界実効線量制限値未満の達成
- ・地下水バイパス運用開始(山側12本揚水井戸稼働)

・イメージングによる1号機炉内調査

・新型ロボットによる1号機格納容器内調査

2号機海水配管トレンチ内滞留水

-2号機タービン建屋からの漏えい-

2011年4月2日、2号機海水配管トレンチに流れ込んだ高レベル汚染水により、取水口付近のケーブルピットでは1000mSv/h以上の線量率が観測された

この事態が確認されるとすぐに、ケーブルピットにはコンクリートが流し込まれた。

滞留水位

しかし、漏えいを止めることはできなかった

2号機海水配管トレンチ内滞留水

-2号機タービン建屋からの漏えい-

2011年4月2日、2号機海水配管トレンチに流れ込んだ高レベル汚染水により、取水口付近のケーブルピットでは1000mSv/h以上の線量率が観測された

この事態が確認されるとすぐに、ケーブルピットにはコンクリートが流し込まれた。

しかし、漏えいを止めることはできなかった

滞留水位 水ガラスを砂利部分に流し込み、 止水実施

高レベル汚染水がトレンチ内に閉じ込められた

1号機ミューオンイメージング

KEK開発の透過法 検出器は厚さ10mmのプラスチックシンチレータ

1号機ミューオンイメージング

1号機ミューオンイメージング

分解能は1m程度であることから、少なくとも1mを超えるデブリは無いとかんがえられる

2号機ミューオンイメージングへの期待

東芝がロスアラモスから技術 導入した散乱型イメージング 装置を使用

ポイントは炉内FPからの高線 量率γ線による偶発同時計数 等、妨害要素の除去

Konstantin Borozdin et al., Phys. Rev. Lett.(2012) doi:10.1103/PhysRevLett.109.1 52501)

東京電力株式会社福島第一原子力発電所原子炉施設の 保安及び特定核燃料物質の防護に関する規則 (平成二十五年四月十二日原子力規制委員会規則第二号)

		評価値(平成27年3月31日申請)		
RO	気体廃棄物	約0.03mSv/年		
濃縮	固体廃棄物及び設備 (直接線・スカイシャイン線)	約0.56mSv/年		
水貯	構内散水	約0.075mSv/年		
槽	液体廃棄物等	約0.22mSv/年		
外 小計		約0.89mSv/年		
RO濃縮水貯槽		約0.9mSv/年※		
	合計	約1.79mSv/年		

制限值 2mSv/年

水モニタリング

北側

南側

地下水·海水放射能測定

地下水·海水放射能測定

全β

全β

全β

¹³

地下水·海水放射能測定

K排水路問題

北側

南側

K排水路問題

北側

南側

2013年8月の汚染水タンクからの漏えいに際し、従来、非管理であった一般排水路(C排水路)からの排水が問題となり、K排水路も対象となった

2014年2月頃から排水路の清掃や瓦礫撤去、山側法面フェーシングを実施して きたが、K排水路に関しては低減効果が確認できなかった

K排水路に係る側溝清掃状況

K排水路清掃状況

2013年8月の汚染水タンクからの漏えいに際し、従来、非管理であった一般排水路(C排水路)からの排水が問題となり、K排水路も対象となった

2014年2月頃から排水路の清掃や瓦礫撤去、山側法面フェーシングを実施してきたが、K排水路に関しては低減効果が確認できなかった

K排水路は港湾内へは接続されておらず、直接外洋への放出構造となっていた。 降雨時に濃度の上昇がみられたことから、2014年11月より汚染源特定調査開

2013年8月の汚染水タンクからの漏えいに際し、従来、非管理であった一般排水路(C排水路)からの排水が問題となり、K排水路も対象となった

2014年2月頃から排水路の清掃や瓦礫撤去、山側法面フェーシングを実施してきたが、K排水路に関しては低減効果が確認できなかった

K排水路は港湾内へは接続されておらず、直接外洋への放出構造となっていた。 降雨時に濃度の上昇がみられたことから、2014年11月より汚染源特定調査開 始された

2015年1月に2号機原子炉建屋大物搬入口屋上の溜り水の濃度が高いことが 確認された

No.	水質調査箇所	Cs134	Cs137	全β	Sr
1	2号R/B屋上(北)	200	650	920	

No.	水質調査箇所	Cs134	Cs137	全β	Sr90	H-3	採水日
1	2号R/B屋上(北)	200	650	920	10	ND(<100)	H27.1.16
	2号R/B屋上(中)	340	1,100	1,900	12	ND(<100)	H27.1.16
3	2号R/B屋上(南)	300	990	1,900	20	ND(100)	H27.1.16
4	大物搬入口屋上	6,400	23,000	52,000	分析中	600	H27.2.19
5	大物搬入口竪樋(東)	920	3,200	9,700	分析中	ND(<100)	H27.2.18

2013年8月の汚染水タンクからの漏えいに際し、従来、非管理であった一般排水路(C排水路)からの排水が問題となり、K排水路も対象となった

2014年2月頃から排水路の清掃や瓦礫撤去、山側法面フェーシングを実施してきたが、K排水路に関しては低減効果が確認できなかった

K排水路は港湾内へは接続されておらず、直接外洋への放出構造となっていた。 降雨時に濃度の上昇がみられたことから、2014年11月より汚染源特定調査開 始された

2015年1月に2号機原子炉建屋大物搬入口屋上の溜り水の濃度が高いことが 確認された

2014年年4月から採取していたK排水路排水濃度測定値を2015年2月まで公表しなかったことに対し、情報公開の在り方に厳しい批判が寄せられた

K排水路問題の物理的対策1

2号機原子炉建屋

■2号機原子炉建屋 大物搬入口屋上部の雨水の汚染防止対策を実施する

- ・屋根排水口廻りにゼオライト土嚢を設置する。
- 汚染源と考えられる屋上のルーフブロック、敷き砂等の撤去を実施する。

屋上写真

ルーフブロック・ 砂撤去

排水口

K 排水路問題の物理的対策 2

K排水路内

■ゼオライト土嚢を排水路底面部へ敷き詰める

■ゼオライト土嚢は流出防止のためフィルターユニット網に複数個単位で入れて、網をボルトで固定する。

2/10撮影(K排水路)

K排水路問題の物理的対策 3

K排水路のルート変更工事完了までの間、 暫定的にC排水路(港湾内に接続)へのポンプ移送実施

K排水路の現状

								単	位:Bq/L
採取場所				К掛	非水路排水				
採取日	6月27日	6月27日	6月28日	6月28日	6月29日	6月29日	6月30日	6月30日	7月1日
採取時刻	11:50	15:50	12:00	16:00	11:50	15:50	11:50	15:50	11:50
Cs-134(約2年)	4 9 [※]	62 [※]	23	20	11	9.6	5.3	3.1	9.7
Cs-137(約30年)	180 [%]	250 [%]	99	69	42	41	21	22	36
全 <i>β</i>	380 [%]	450 [%]	190	150	120	94	75	79	140

採取場所	K排水路排水口 降雨時の影響								
採取日	7月1日	7月2日	7月2日	7月3日	7月3日	7月4日	7月4日	7月5日	7月5日
採取時刻	15:50	11:50	15:50	11:50	15:50	11:50	15:50	11:55	16:00
Cs-134(約2年)	19	10	7.7	28 ^{**}	4.4	7.4	4.9	11	6.3
Cs-137(約30年)	76	41	31	120 ^{**}	27	35	21	38	29
全 <i>β</i>	170	72	63	260 [%]	43	75	57	100	98

採取場所	K排水路排水口								
採取日	7月6日	7月6日	7月7日	7月7日	7月8日	7月8日	7月9日	7月9日	
採取時刻	11:50	15:50	11:50	15:50	11:50	15:50	11:50	15:50	
Cs-134(約2年)	8.1	4.9	6.2	4.6	5.4	5.1	6.5	5.0	
Cs-137(約30年)	28	21	22	22	19	23	24	24	/
全 <i>β</i>	68	62	49	62	59	46	99	51	/

放射線計測

項目	場所	測定対象	γ線	全β線		Sr	H3
古しべりなむお		進のすな	Ge半導体検出器	_	低BG GFC	<i>β</i> 線スペクトロメータ	
同レイル取割能	5,0万城小クトノ小	沛田小寺	(ORTEC)		LBC-4211	ピコβ	_
古任しべきな史能	理培练田博二书	をする	Ge半導体検出器	低BG LSC	低BG GFC		低BG LSC
中国レイル政制能	垜児官理衆フ 小	地下水寺	(ORTEC)	LSC-LB5B	LBC-4202B	_	LSC-LB5B
	化学分析棟ラボ	地下水バイ	Ge半導体検出器	低BG LSC	低BG GFC	<i>β</i> 線スペクトロメータ	低BG LSC
1成羽レインレ成別配		パス等	(ORTEC)	LSC-LB7	LBC-4202B	ピコβ	LSC-LB7
売明始星 変	モニタリングポスト	地上1.6m	4気圧Ar封入式	00在庄昌十			
空间称里平	8地点	線量率	球形電離箱	26年度取入 4.4/1 µ Gy/h			
挂笛亦明始星	環境線量測定点	地上1.0m	ガラス線量計	00在庄昌十	20 E 4 O / 2M		
惧昇笁间称重	21地点	積算線量	(SC-1)	20年度取入	30.54mGy/ 3M		

環境中のγ線、ラドン・トロンの影響を 受けずに空気中のαダスト、βダストを 高い安定度で計測

IEC61578に基づくラドン・トロン補正

放射能 (Bq)=γ補正済み計数率(cps)/検出効率(%)で定義される。

積算空気中濃度(Bqh/m³)=放射能(Bq)/流量(m³/h) = γ補正済み計数率(cps)/{検出効率(%)×流量(m³/h)}

空気中濃度(Bq/m³)=積算空気中濃度(1時間)_n-積算空気中濃度(1時間)_{n-1}の演算を300秒毎の移動平均として行っている。

従って、定期的な校正要素は

①検出効率(%)校正=標準面線源放射能(Bq)/ICAMの計数率(cps) 代表値 ~ 23-30%(4n)程度

②流量(m³/h)校正=基準流量計を用いたマスフローメータの校正

海外での使用例: IAEA サイバーズドルフ研究所

海外での使用例:英国 セラフィールド

指向性モニタリング装置

- ・360度全方位を45度ずつ26分割して計測
- ・空間線量率に及ぼす影響が大きい方向・対象物を定量的に把握することが可能
- ・鉛遮蔽板を着脱して計測することにより、計測精度を高めている。

指向性モニタリング装置

0.90µSv/hの場でΣ=0.94µSv/h

コンプトンカメラ

下記方程式から散乱検出器と吸収検出器で測定されたγ線の相互作用点を結ぶ直線を軸とし、 散乱検出器における相互作用点を頂点とした、散乱角θの2倍の開角を持つ1つの円錐面が定まる。 その円錐面はγ線源の位置を通るため、多数の測定から定められる**円錐面の重ね合わせ**から、 γ線源の位置の描出が可能となる。

コンプトンカメラ方式の大きな特徴は、機械的なコリメータを必要としないγ線撮像装置であるという事に尽きる

$$\cos \theta = 1 + meC^2 \left[\frac{1}{E_{\gamma}} - \frac{1}{E_{\gamma} - E_1} \right]$$
$$E_{\gamma} = E_1 + E_2$$

E_γ:入射γ線のエネルギー *E*₁:散乱検出器で測定されたエネルギー *E*₂:吸収検出器で測定されたエネルギー *m_ec*²:電子の静止質量エネルギー

高分解能コンプトンカメラへ

シリコンフォトマルへ

コンプトンカメラで用いる光検出器

MPPC (Multi Pixel Photon Counter)はシリコンフォトマル とも呼ばれるAPDの集合体で、機器を大幅に小型軽量化できる

これは一つ一つのAPDが微小のGM管のような働きをする

光子が同一pixel(すなわちAPD)に何個入っても、出てくるパルスは同じ高さの1個だが、別のpixelに入ればパルス波高は加算される

クエンチング抵抗 反射防止層 バイアス

N層

電子なだれ領域

等価回路

ガイガーモードの

クエンテング紙材

P層

港湾口海水放射線モニタ

目的:定期的に行っている海洋モニタリングを連続監視

港湾口海水放射線モニタ

港湾口海水放射線モニタ

核種	告示濃度限度(Bq/ℓ)	平均実測値(Bq/ℓ)	検出限界値(Bq/ℓ)
Sr-90	30	I	分離測定機能無
Cs-134	60	0.11	0.02
Cs-137	90	0.46	0.05
H-3	60000		分離測定機能無
全 <i>β</i>		9.6	8.7

外観と構成

高線量率用コリメータ使用時の¹³⁷Cs出力波高分布

662keV photo peak

コリメータに入れることで95mSv/hを超える線量率 でスペクトル計測が可能

エネルギー分解能は 2.01%@ 662keV at 95mSv/h

エネルギー分析例

8時間の連続動作で662keV相当 ピークチャンネルドリフトは±1ch (全4096ch)であった

光電ピークの温度依存性

20℃以上でゲイン変動は見られないが エネルギー分解能は低下する

20℃以下では温度の低下と共に ゲインは低下する

エネルギー分解能は15℃における 1.46%@662keVを最高として温 度が下がっても、上がっても低下する

リアルタイム線量率モニタ

雷士-約10

リアルタイム線量率モニタ

免震重要棟、入退管理棟に大型画面を設置

