

Radiocaesium mobility in the «soil-water» system – underlying processes. Looking at **Fukushima from a Chernobyl perspective**

Alexei Konoplev

Institute of Environmental Radioactivity Fukushima University

INSTITUTE OF ENVIRONMENTAL OUTLINE

- Radiocesium solid-liquid distribution in soilwater system;
- Radiocesium wash-off and river transport;
- River flood plain processes: accumulation and loss;
- Irrigation ponds critical water bodies?
- Monitored natural attenuation as a remediation option;
- Main messages

Mobility and bioavailability of radiocesium are determined by ratio of its chemical forms in fallout and site-specific environmental characteristics determining rates of leaching, fixation/remobilization as well as sorption-desorption of mobile fraction (its solidliquid distribution).

Caesium Workshop, Fukushima, 6-9 October, 2014

Concept of exchangeable K_d

- The existing methods for estimating the distribution coefficient have a common drawback which is the absence of a clear division of radionuclide speciation based on their ability to exchange with the liquid phase.
- This problem can be resolved by using the concept of exchangeable form of the radionuclide (Konoplev and Bulgakov, 1999).

Selective sorption and fixation of radiocesium

 High retention of radiocesium in soils is caused by two main processes: selective reversible sorption on illitic clay minerals and fixation

$$FES - M + {}^{137}Cs^+ \leftarrow {}^{K_c^{FES}(Cs/M)} \rightarrow FES - {}^{137}Cs + M^+$$

 $RIP^{ex}(M) = K^{ex}_d(Cs) \times m_M = K^{FES}_c(Cs/M) \times [FES]$

FES RES

$$K_d^{ex}(^{137}Cs) = \frac{RIP^{ex}(K)}{([K^+]_W + K_c(N/K)[NH_4^+]_W)}$$

Caesium Workshop, Fukushima, 6-9 October, 2014

Futushima University INSTITUTE OF ENVIRONMENTAL RADIOACTIVITY Radiocesium K_d(L/g) in rivers. Chernobyl-Fukushima comparison

River	Period	Min	Max	Median	Geom Mean	Ariphm Mean	St Dev
Chernobyl							
Dneper Nedanchichi	1987-1999 DB "RUNOFF"	4,1	165	29	28,3	38,7	29,6
Pripyat Belaya Soroka	1988-1999 DB "RUNOFF"	1,7	42,8	8,1	9,6	15,9	16,4
Pripyat Chernobyl	1986-1999 DB "RUNOFF"	2,6	176	25,2	24	34	30
Uzh Cherevach	1986-1990 DB "RUNOFF"	2,5	168	29	28,3	45,5	42
Fukushima							
Abukuma Fukushima city	2012-2013 Nanba, 2014	56,6	1660	564	561	665	352
Hiso River	2011 Ueda et al., 2013	92,4	955	139	179	230	226
Wariki River	2011 Ueda et al., 2013	252	923	367	439	484	229

Radiocesium solid-liquid distribution at Fukushima

- K_d values in the surface waters of the Fukushima area are much higher those for the Chernobyl area (by 1-2 orders of magnitude).
- This points to a high radiocesium binding capacity of sediments and soils in the Fukushima area and, as a result, a significant part of radiocesium on the area contaminated after the Fukushima accident are transported on suspended material with surface runoff and river flow.

Caesium Workshop, Fukushima, 6-9 October, 2014

Fukushima University INSTITUTE OF ENVIRONMENTAL RADIOACTIVITY

River watersheds in Fukushima and Chernobyl

After Konoplev et al., 1988

After Evrard et al., 2012

Radionuclide wash-off from catchment – secondary contamination of rivers and lakes by surface run-off

 Wash-off coefficient K_w is the portion of radionuclide deposition on the catchment washed-off with surface runoff to water bodies. Total washoff coefficient is composed from "solid" and "liquid" wash-off coefficients K₁ and K_s:

$$K_{l} = \frac{\int_{O}^{I} C_{w}(t) V(t) dt}{\int_{S} C_{S} dS} = \frac{\overline{C_{w}}}{\overline{C_{S}}} \frac{V}{S}, \qquad \qquad K_{s} = \frac{\int_{O}^{I} C_{a}(t) m dt}{\int_{S} C_{S} dS} = \frac{\overline{C_{a}}}{\overline{C_{S}}} \frac{M}{S},$$

 Normalization of wash-off coefficients on runoff characteristics allows to predict radionuclide entering to water bodies in dissolved and adsorbed state.

where h – runoff depth, mm; g – mass of eroded material from the catchment.

Caesium Workshop, Fukushima, 6-9 October, 2014

Chernobyl 30-km zone

After Konoplev et al., 1988

Fukushima Prefecture

After Yoshimura et al., 2014

Radiocesium wash-off from runoff plots

Location	Date	Land use	^{137}Cs ,	N _I ,	$N_{s'}$	K _d , L/kg	References
				' '	m-/g		
Chernobyl artificial raining							
Dovlyady	07.1986	Grassland	1310∓170	31 × 10-6	10 × 10 ⁻⁵	(16∓9)×10 ³	Konoplev, 1998
Benevka	10.1986	Grassland	1540∓280	29×10-6	2,6×10 ⁻⁵	(17∓10) × 10 ³	Konoplev, 1998
Chernobyl snowmelt							
Dovlyady	03.1987	Grassland	1310∓170	0,9 × 10 ⁻⁶	1,7 × 10 ⁻⁵	(13∓1,3) × 10 ³	Konoplev, 1998
Benevka	03.1987	Grassland	1540∓280	1,9×10-6	5,2×10 ⁻⁵	(15∓14) × 10 ³	Konoplev, 1998
Kopachi	04.1987	Pine Forest	1650∓450	57 × 10⁻⁰	32×10 ⁻⁵	(17∓3,4)×10 ³	Konoplev, 1998
Korogod	04.1987	Farmland	246∓28	7,2×10°	2,0×10 ⁻⁵	(3,9∓1,8)×10 ³	Konoplev, 1998
Fukushima long-term runoff plots							
Kawamata	2011- 2013	Grassland	560	-	2,1×10 ⁻⁵	-	Wakiyama et al., 2014
Kawamata	2011- 2013	Cedar Forest	440	-	14 × 10 ⁻⁵	-	Wakiyama et al., 2014
Kawamata	2011- 2013	Farmland uncultivated	410	•	5,3×10 ⁻⁵	-	Wakiyama et al., 2014
Kawamata	2012- 2013	Farmland cultivated	410	-	0,97 × 10 ⁻⁵	-	Wakiyama et al., 2014

Caesium Workshop, Fukushima, 6-9 October, 2014

Radiocesium wash-off from river ¹ catchments

River name	¹³⁷ Cs deposition, kBq/m ²	N _I , mm ⁻¹	N _s , m²∕g	K _d , L/g		
Fukushima, December 2012, Yoshimura et al., 2014						
Ukedo river	2500	1.3×10 ⁻⁷	2.2×10 ⁻⁵	500		
Niida river	900	0.8×10^{-7}	1.5 × 10 ⁻⁵	200		
Mano river	400	0.8×10^{-7}	1.6×10 ⁻⁵	200		
Abukuma river	120	1.2×10 ⁻⁷	2.8×10 ⁻⁵	600		
Chernobyl, January 1988, Konoplev et al., 2002						
Sakhan river	2300	30 × 10 ⁻⁷	-	-		
Iput river 275		50 × 10 ⁻⁷	-	-		
Sozh river 250		50 × 10 ⁻⁷	-	-		
Dneper river	Dneper river 39		17 × 10 ⁻⁵	15		
Pripyat river 31		140 × 10 ⁻⁷	21 × 10 ⁻⁵	32		

Radiocesium wash-off from the catchments of Fukushima

- Normalized solid wash-off coefficients for Fukushima area very well corresponded to those of Chernobyl;
- Normalized liquid wash-off coefficients N_l (mm⁻¹) in the Fukushima NPP area are about an order of magnitude lower those obtained in the Chernobyl area.
- It was found that the total wash-off coefficient of radiocesium from farmlands in Fukushima area can be high and reaches up to several % per year (Yoshimura et al., 2014);
- Generally, high precipitation in the region and steep slopes promote higher wash-off of radiocesium as compared to the Chernobyl case.

Caesium Workshop, Fukushima, 6-9 October, 2014

F Fukushima University

ENVIRONMENTAL RADIOACTIVITY Map of annual precipitation, Japan

Annual precipitation in contaminated area is 1000-1600 mm, 2-3 times higher than in the Chernobyl zone (500-600 mm)!

Grassmat

Suspended sediment time integrated sampler Caesium Workshop, Fukushima, 6-9 October, 2014

Fukushima University INSTITUTE OF ENVIRONMENTAL RADIOACTIVITY

Map of radiocesium contamination of the Niida River catchment

3

5

Δ

Monitoring sites
1 – sub-catchment number

Radiocesium vertical profiles in soils of Niida river flood plain

Cs-134 Cs-137

Caesium Workshop, Fukushima, Cs-134 Cs-137 6-9 October, 2014

Total ¹³⁷Cs activity concentrations in water bodies of Okuma town (March 2014)

		*	*	
Location	Distance from FDNPP, km	Dose rate, uSv/h	Deposition ¹³⁷ Cs, kBq/m ²	¹³⁷ Cs, Bq/L
Suzuuchi	3,75	24	5840	59,4∓0,9
Funasawa	3,50	3,25	-	9,3∓0,2
Inkyozaka	0,24	11	4250	3,78∓0,06
Kashiramori	7	3,3	865	0,747∓0,003
Sakashita	8	3,0	672	0,125∓0,013

Fukushima University

Caesium Workshop, Fukushima, 6-9 October, 2014

INSTITUTE OF ENVIRONMENTAL RADIOACTIVITY

Simplified diffusion model of radiocesium vertical migration

$$Q(x) = \frac{Q_0}{\sqrt{\pi Dt}} \times e^{-\frac{x^2}{4Dt}}$$

- Q(x) radiocesium content on depth x (Bq/m²cm);
- Q₀ radiocesium inventory in soil (Bq/m²);
- x depth (cm);
- t time after deposition;
- D effective diffusion coefficient (cm²/year)

Caesium Workshop, Fukushima, 6-9 October, 2014

Effective diffusion of radiocesium in soils of Okuma town

Effective diffusion of radiocesium in soils of Okuma town

Location	Deposition, kBq/m ²	Soil type	D _{eff} , cm²/year				
Fukushima							
Suzuuchi	5840	Sandy Fluvisols	2,48				
Inkyozaka	4250	Sandy Fluvisols	2,24				
Kashiramori	865	Sandy-loam Cambisols	9,27				
Sakashita	672	Loam Inceptisols	5,0				
Chernobyl							
Benevka	1500	Alluvial sandy-loam	0,5				
Chernobyl	750	Cultivated sandy-loam	0,6				

- D_{eff} for Fukushima soils are higher than for Chernobyl soils (Konoplev et al., 1990) – result of higher precipitation;
- Similarly to Chernobyl case migration rate in forest soil is essentially higher than in grassland and farmland.

Caesium Workshop, Fukushima, 6-9 October, 2014

Monitored natural attenuation - an option for water remediation

- Natural attenuation, by definition, constitutes the least invasive approach to environmental remediation;
- Reliance on natural attenuation requires detailed characterization of the site and adequate monitoring owing to the evolution of natural systems with time;
- The purpose of MNA is to take advantage of natural processes that reduce the flux of a contaminant reaching any given receptor.

INSTITUTE OF ENVIRONMENTAL CONCLUSIONS

- Normalized solid wash-off coefficients for Fukushima area very well corresponded to those of Chernobyl;
- Normalized liquid wash-off coefficients N_{l} (mm⁻ ¹) in the Fukushima NPP area are about an order of magnitude lower those obtained in the Chernobyl area.
- Generally, high precipitation in the region and steep slopes promote higher wash-off of radiocesium as compared to the Chernobyl case;

Caesium Workshop, Fukushima, 6-9 October, 2014

Conclusions

- Irrigation ponds can be considered as a critical water bodies in terms of radiocesium mobility and bioavailability and should be surveyed before water application;
- D_{eff} for Fukushima soils are higher than for Chernobyl soils;
- Similarly to Chernobyl case migration rate in forest soil is essentially higher than in grassland.

INSTITUTE OF ENVIRONMENTAL RADIOACTIVITY

- For remediation strategy development and decision making the long-term wide scale (catchment-river-lake) monitoring program should be in place.
- Long-term monitoring program should include not only measurements of radionuclide activity concentrations (solution, solid etc.) but also their speciation and environmental characteristics determining radionuclide behavior such as RIP, competing ions concentrations etc.
- Information on radionuclide chemical forms, their transformation in other words mobility and bioavailability should be taken into account when rehabilitation and decontamination strategies are developed on local or regional scale.

Caesium Workshop, Fukushima, 6-9 October, 2014

THANK YOU VERY MUCH FOR YOUR ATTENTION!

QUESTIONS?

<u>alexeikonoplev@gmail.com</u> T: +81 805 844 0962 http://www.ier.fukushima-u.ac.jp