2<sup>nd</sup> Caesium Workshop: meeting challenges for Fukushima recovery, at Fukushima (2014.10.7)

### NIES Modelling of Cs transport in terrestrial area around Fukushima

Yoshitaka IMAIZUMI Environmental Recovery Research Program, Fukushima Project Office, National Institute for Environmental Studies, Japan

### Purpose of this study

- Background
  - It is necessary to know the long-term fate of <sup>137</sup>Cs
  - Understanding and forecasting of fate processes such as accumulation, runoff and flow-down through river system needs to be known, to consider the future actions to the residual terrestrial contamination
- Purpose of the study
  - To establish simulation model for multimedia fate processes of <sup>137</sup>Cs in Fukushima and surrounding region
  - Simulation has been performed by combining atmospheric transport model (CMAQ) outputs and a multimedia fate model G-CIEMS (Grid-Catchment Integrated Modeling System) which has been developed for Japan

### Today's topics

- 1. Overview of Fukushima
- 2. Introduction of multimedia fate model
- 3. Model conditions and results
- 4. Model improvement
- 5. Future tasks





### Radioactive Cs in Fukushima

- Main nuclear species: <sup>137</sup>Cs(half-life of 30 yrs) and <sup>134</sup>Cs (half-life of 2 yrs)
- Frequently investigated area: within 80km from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP)
- High air dose rate area spreads in a north-westerly direction (ellipsoidal area in the right map)



Air dose rate over 1m above ground level in the 6<sup>th</sup> airborne monitoring From Nuclear Regulation Authority <u>http://radioactivity.nsr.go.jp</u>

#### Land form, land use in high conc. area

- Mainly east side of Abukuma mountains (=Hamadori region)
  - Top area of mountains: forest + agriculture, low slope
  - Half level of mountains: forest, steep
  - <u>Bottom area</u>: agricultural land + built-up area, flat



#### Time trend of air dose rate

- Air dose rate over 1m above the ground level from the 3<sup>rd</sup> - 7<sup>th</sup> airborne monitoring
- 3 meshes (1km x 1km mesh) picked up from high concentration area
- Dotted lines indicate theoretical radioactive decay of <sup>134</sup>Cs + <sup>137</sup>Cs
  - Attenuation occurs by other reason than radioactive decay (e.g. weathering)



Date (from Jul. 2<sup>nd</sup> 2011 to Sep. 28<sup>th</sup> 2013)

Time trend of air dose rate over 1m



From Nuclear Regulation Authority http://radioactivity.nsr.go.jp

#### Concentration of <sup>137</sup>Cs in sediment

- Pick up the sites where <sup>137</sup>Cs was detected in all samples in Fukushima prefecture.
- Same site's results are connected.

 Concentration in each site widely varied.

Whole trend is not clear



From the Ministry of the environment <u>http:// www.env.go.jp/en/water/rmms/surveys.html</u>

Sep-'11 Dec-'11 Apr-'12 Aug-'12 Dec-'12 Apr-'13 Concentration of <sup>137</sup>Cs in sediment in Fukushima prefecture.

#### Meteorological properties of Fukushima

Comparison with Kiev city located near Chernobyl



### Key processes in each "place"

- Forest area
  - <u>Vertical transport</u>: intake into trees, litterfall, from litter layer to soil (include decomposition of litter), vertical distribution in soil layer
  - <u>Characteristics</u>: tree species (evergreen/conifer, or more detail), slope, management condition
  - Soil runoff: soil erosion, gully erosion, landslide
- Surface water and sediments (rivers and lakes, dams)
  - Initial deposition: surface water area, structural river width
  - Temporal change: flow rate, river width, hotspots in river bed
  - <u>Suspended solids</u>: bed load transport, suspended sediment transport, wash load, sedimentation and resuspension
- Urban area
  - Artificial material: sorption of Cs, penetration of Cs
  - <u>Artificial transport</u>: decontamination, waste transportation (e.g. dead leaves, weeds)
  - <u>Water network</u>: river water, sewage water, irrigation (seasonal event)

## Key points related to environmental fate of radioactive Cs

Especially for the Fukushima accident

- Forest is main "high polluted area"
- Radioactive Cs transports from "high polluted" mountainous area to lower-level, flat, inhabited area
- Air dose rate at the surface (1m above) obtained by airborne monitoring is gradually decreasing, but concentration of <sup>137</sup>Cs in sediment might not.
- Influence of heavy rainfall event is important





#### Multimedia fate model (G-CIEMS)

- Calculating fate of organic chemicals in multimedia (atmosphere, surface soil, surface water, etc) for whole Japan
- > Spatial resolution for all media based on actual geological formation
- Connection between Soil runoff, river, and rivers network

| MULTIMEDIA Air as Grid | media            | Average<br>size                         | No of<br>segments                                           |  |
|------------------------|------------------|-----------------------------------------|-------------------------------------------------------------|--|
| River Soil             | Atmosphere       | 5km x 5 km<br>(or<br>1km x 1km)         | About 38<br>thousands<br>(above the<br>terrestrial<br>land) |  |
| LAND(Basin)            | Surface<br>water | 5.6 km<br>(length)                      | About 38<br>thousands                                       |  |
| SOIL SOIL SOIL         | Surface<br>soils | 9.3 km <sup>2</sup>                     | About 38<br>thousands                                       |  |
| Segment network        | sediment         | under the all surface water<br>segments |                                                             |  |

#### Multimedia fate model (G-CIEMS)

- For exposure assessment of organic pollutant, based on spatial distribution of concentration in each media
- Mainly for annual average situation



Suzuki, N. et al. (2004) Environ. Sci. Tech.



### Target spatial scale



### Summary about model scale

About developing a model for Cs fate in the environment

- First step
  - To roughly grasp the whole situation (e.g. flow and stock)
  - Spatial scale: Fukushima + north Kanto region
  - Temporal scale: annual, decade
- Next step
  - To represent key processes (e.g. Surface runoff caused by heavy rain)
  - Focus on limited area such as high concentration area, interesting place
  - Spatial scale: Abukuma river basin, hamadori region.
  - Temporal scale: annual

#### Project in NIES : multimedia fate modeling study

• To establish simulation model to estimate the long-term ( up to several tenth years) fate of radioactive substances, combining existing atmospheric, multimedia and ocean fate models





#### Transport processes in soil compartment

 Each soil segment have 7 categorized zones (land-use area), which have independent properties and concentration



#### Atmospheric transport model (ATM)

Application of pollutant-transport model to radioactive substance



# 3. Model conditions and results



#### Parameter setup (1)

#### Fixed assumption

- Chemical species of Cs is not considered
  - No enough information
- Soil depth
  - Farm land: 30 cm, built-up area: 3.5 cm, other areas : 5 cm
  - Tentative setup considering the area characteristics of the land use
- River flow rate
  - · Constant flow rates based on ordinary water discharges
- River and lake sediment
  - Constant depth as 2 cm
  - · Constant re-suspension at a rate of complete turnover in 3 years
- Values for considering sensitivity to results
  - K<sub>d</sub>: Distribution coefficient of Cs between solid and liquid
  - Soil Runoff rates in each land-use areas

#### Parameter setup(2)

#### - ranges of sensitivity analysis for K<sub>d</sub> and runoff rates

#### Distribution Coefficient (K<sub>d</sub>):

- Central value: Geometric mean in IAEA report\*
- High-K<sub>d</sub>: 5-times higher than the central
- Low- $K_d$ : 5-time lower than the central

#### Soil Runoff rates

- Forest and Shrub: Based on field observation of <sup>137</sup>Cs runoff in Tsukuba Mt. (0.3%/year)
- Paddy/Farm land: Based on agricultural land guidance (Case1, 3), or 5 times lower than that (Case2, 4)
- Built-up area: Based on airborne monitoring analysis (Case 1, 2), or same as nonvegetated area (Case 3, 4)
- Nonvegetated/Other areas: 20 times lower than the farm land value (Based on plant coefficients in USLE cited in agricultural land guidance

| Kd (L/kg)                        | High Kd                | Cent Kd               | Low Kd                |  |
|----------------------------------|------------------------|-----------------------|-----------------------|--|
| In Soil                          | 6.0 x 10 <sup>3</sup>  | 1.2 x 10 <sup>3</sup> | 2.4 x 10 <sup>2</sup> |  |
| In surface water<br>and sediment | 1.45 x 10 <sup>5</sup> | 2.9 x 10 <sup>4</sup> | 5.8 x 10 <sup>3</sup> |  |

|                                              |                            | Soil<br>depth | Soil runoff rate as l<br>(mm/y) |        |        | bulk   |  |  |
|----------------------------------------------|----------------------------|---------------|---------------------------------|--------|--------|--------|--|--|
| ł                                            |                            | (cm)          | Case 1                          | Case 2 | Case 3 | Case 4 |  |  |
| I                                            | Forest and shrub           | 5             | 0.17                            | 0.17   | 0.17   | 0.17   |  |  |
|                                              | Paddy and other farmland   | 30            | 1                               | 0.2    | 1      | 0.2    |  |  |
|                                              | Built-up                   | 3.5           | 4.6                             | 4.6    | 0.05   | 0.05   |  |  |
|                                              | Nonvegetated<br>and Others | 5             | 0.05                            | 0.01   | 0.05   | 0.01   |  |  |
| Central condition used in following results. |                            |               |                                 |        |        |        |  |  |



#### Simulated trend of <sup>137</sup>Cs in soil

area

in each land-

use area

Decreasing trend of <sup>137</sup>Cs in soil Most part of <sup>137</sup>Cs were Simulated to slightly faster than mainly deposited to forest radioactive decay, by runoff area processes 100% Fotal amount of <sup>137</sup>Cs in soil 2E+15 90% Others 80% 1.5E+15 Built-up 70% Nonvegetated 60% (Bq) 1E+15 Forest 50% Shrub 40% 5E+14 30% Other farmland 20% Paddy 10% 0 Decay only 2016 2012 2013 2014 2015  $\sim$ ø 6 0% 201 201 201 201 Proportions Proportions of deposited of land-use Year (March 31 in each year) <sup>137</sup>Cs amount

Comparison between observations and predictions of <sup>137</sup>Cs concentrations in river sediment



- Rough consistency between observations and predictions
- Further study need for more detailed analysis and other compartments

Comparison between geometric means of depth-corrected concentrations of <sup>137</sup>Cs in river sediment in Fukushima prf. where <sup>137</sup>Cs was detected in all four surveys performed in FY 2011, and predicted concentrations in related river sediment at March 31, 2012

27

#### Discussion: Sensitivity analysis - <sup>137</sup>Cs Outflow from land to the sea

• Outflow flux of <sup>137</sup>Cs is simulated to keep steady trend

 Since prediction still contains large uncertainty, further study is necessary before the results will be considered confidential



 ✓ Cnt K<sub>d</sub>: 1.2×10<sup>3</sup> L/kg, High-K<sub>d</sub>: Cnt kd x 5, Low-K<sub>d</sub>: Cnt Kd / 5
✓ Soil Runoff rates (default case is "Case 3") Case 1: High farm land, high built-up, Case 2: Low farm land, low built-up Case 3: High farm land, low built-up, Case 4: Low farm land, low built-up

 $<sup>\,\</sup>circ\,\,$  It may be strongly affected by distribution coefficients and soil runoff rates



### Summary of results

- First trial of multimedia fate model for <sup>137</sup>Cs around Fukushima region was developed
  - Media distribution
  - Long-term Temporal trend
  - Outflow simulation from river to ocean
- Preliminary study on major uncertainties from:
  - Runoff parameters
  - Solid-liquid partitioning
- Next tasks
  - Surface runoff processes
  - Transportation in surface water network

### 4. Model improvement



### **Outline of USLE**

#### USLE (Universal Soil Loss Equation)

- To predict the average rate of soil erosion for agricultural fields. Kitahara *et. al* apply USLE to Japanese mountainous forest.
- A=RKLSCP
  - A: Soil loss per unit area
  - R: Rainfall and runoff factor
- Only R factor could change drastically.
- Several factors (C, P) could change seasonally or slowly.
- K: Soil erodibility factor, decided from soil condition
- L: Slope-length factor
- S: Slope-steepness factor
- C: Cover and management factor, comparing to tilled fallow
- P: Support practice factor, like strip-cropping or terracing

USDA Agriculture handbook 537 (1978) Kitahara, J. For. Res. 5 (2000)

### Rainfall and runoff factor (R)

- R factor equals cumulative EI (Energy-times-Intensity) values, which indicate effects of each rain event.
- Modified method by Hosoyamada 1984 (1-hour rainfall intensity was used, though originally 30-min rainfall intensity was used,)

$$E = (916 + 331 \log_{10} I) \times 0.753$$

 $R = \sum E \cdot I_{60}$ 

- E: Energy of unit rain (m·tonf/hectare/inch)
- *I* : Intensity of rain (inch/hour)

 $I_{60}$ : Maximum 60-min intensity for each rain event

- R: Runoff factor (m<sup>2</sup>·tonf/hectare/hour)
- rain event: divided by "no rain"(<1mm/hour), and</p> total rainfall is more than 13 mm.
- **R** factor include effect of "rainfall energy"
- So, R factor is not proportional to amount of rainfall

33

### Rainfall and R factor

#### Rainfall data

- Radar-AMeDAS Precipitation Analysis
  - Rain gauge observation at about 1,300 by Japan Meteorological Agency
  - Estimated precipitation based on Radar echo intensity data and AMeDAS observation data
  - rainfall data for each  $3^{rd}$  mesh (=1km<sup>2</sup>), every 30 0 min.

#### Daily rainfall vs daily R factor

- From March 1st to December 31st 2011
- In a mesh having the maximum value of total R factor
- Only two rainfall events ("A" and "B" in right fig.) contribute more than half of the total value of R factor





1,000 2,000 3,000 4,000 0 Cumulative rainfall (mm)

(m<sup>2</sup>tonf/(ha hr))

# Discussion points about model improvement

- USLE would be useful in order to improve the model for having spatiotemporally higher resolution.
- It is important to evaluate influence of "higher resolution" in next viewpoints
- First (priority)
  - To accurately predict "total amount of outflow of <sup>137</sup>Cs from certain terrestrial region" (e.g. Annual flux)
- Second
  - To predict influence of a "big event" to the flux of Cs (but, to predict a big event itself is out of target)





#### Future tasks

- Discussion by monitoring data analysis
  - Both air dose rates and concentrations of <sup>137</sup>Cs and <sup>134</sup>Cs
  - Mass balance of <sup>137</sup>Cs in the environment
- Solid-liquid partitioning of <sup>137</sup>Cs
  - "Insoluble cesium ball"
  - Sorption onto organic matter
- Incorporation of detailed terrestrial/aquatic processes
  - Model improvement both terrestrial surface runoff and aquatic water/soil transportation
- Detailed consideration for built-up area
  - Artificial water network
  - Decontamination works



37

## THANK YOU FOR YOUR ATTENTION!

