

Relating aquatic models to public concerns

Prof. Jim Smith University of Portsmouth

Integrated dose assessment and aquatic pathways

Freshwater dose pathways

Smith, J.T., Voitsekhovitch, O. et al. A critical review of aquatic countermeasures *J. Env Rad.* **56**, **11-32**.

Freshwater internal doses - minor compared to terrestrial

- Drinking water: dose very minor at this stage (c.f. ~ 6 Bq/l in some natural waters);
- Freshwater fish/foodstuffs activity concentrations/doses can be very high, but doses generally low (low consumption rates) except to critical groups;
- Important to focus on dose, not activity concentration (where possible).

External doses

- River bank/coastal occupancy;
- Very minor dose from water;
- Swimming ? Minor except possibly for close contact with contaminated sediment.

Assessing aquatic foodchain doses from ^{137,134}Cs and ³H

- ³H: Weak beta ~ Annual Limit of Intake ca. 24 MBq for 1 mSv y⁻¹ effective equivalent dose (c.f. 75 kBq for Cs-137).
- For ³H: If <u>input</u> not OBT then no bioconcentration: <u>Equilibrium</u> CF ~ 1
- Past high ³H input to catchment could reach aquatic food chain with delay via sediment/detritus, but not expected to be important in dose formation.

Aquatic food webs

Lake model; Lars Hakansson, University of Uppsala

University of **Portsmouth**

Interaction of Cs-137 with lake sediments

Lake water

Aqueous Solid phases

$$\frac{\partial C_e}{\partial t} = \frac{\partial}{\partial x} \left[\phi \psi D_o \frac{\partial}{\partial x} \left(\frac{C_e}{\phi + s K_d^e(x)} \right) - r C_e \right] - k_f C_e + k_b s C_i - \lambda C_e$$

$$s\frac{\partial C_i}{\partial t} = -\frac{\partial (rsC_i)}{\partial x} - k_b sC_i + k_f C_e - \lambda sC_i$$

(Smith & Comans, Geochim. Cosmochim. Acta, 1996)

Fish submodel

Caesiumpotassium model

Caesium-potassium model from measurements in lakes

Vanderploeg et al. 1975

Fish sub-

[K⁺] (mg I⁻¹)

New Model:

Models should be as simple as possible...

Size/trophic level/age effect

Radiocaesium in fish in the Kiev Reservoir (Sansone and Voitsekhovitch, 1996)

Cs-137 in Lake Vorsee, Germany

litate lake water

Blind prediction of AQUASCOPE model – litate Lake Chaisan, K., Kameda, Y. (Chiba Inst Technol.), Smith J.T., unpubl. res.

Long timescale changes...

Smith, J.T. et al. (2000) Chernobyl's legacy in food and water. *Nature*, 405.

Cs-137 in European Rivers (Dissolved)

Smith J.T., et al. (2004) *Env. Sci. and Technology*, 38, 850-857. Ueda et al. (2013) *J. Env. Radioactivity*,118; 96-104

Assessing the impacts of countermeasures/ lifestyle changes

A countermeasure experience

Smith J.T., Kudelsky A.V., Ryabov I.N., Hadderingh R.H., Bulgakov A.A. (2003) *The Science of the Total Environment* 305, 217-227.

Result of 10 x increase in potassium in L. Svyatoe, Belarus

Model prediction - perch

Changes in water chemistry

Disadvantages of countermeasures

- Often very expensive is the cost per Person-Sv justifiable ? E.g. if 10-20 psnSv = one averted fatal cancer, and a life is valued at \$X Million, cost per psnSv ≤ \$X M ÷10-20
- Dose to clean-up workers; waste generation
- Potential unintended consequences to humans (e.g. salting fish can reduce Cs, but excessive salt intake may outweigh health benefit) and ecosystem damage.

Lifestyle changes

- Ban on consumption of fish/aquatic foodstuffs; economic value of commercial and sport fishing, but catch and return possible for sport fishermen;
- Occupancy/Swimming/boating ban ? Unlikely to be needed if area is suitable for re-settlement, but this needs to be assessed.

Applicability/reliability of models for Fukushima conditions

- Need to <u>critically test</u> models, not validate them;
- Indications are that models developed post-Chernobyl will overestimate food chain doses for Cs but underestimate physical redistribution by sediment;
- Need model endpoints at an appropriate spatial scale – if dose limitation, not Bq/kg is the objective, spatial scale is large.

What models/research do we need?

- Need to <u>critically</u> evaluate countermeasures by economic and dose cost/benefit;
- Very long term Cs-137 trends? Weapons Test and Chernobyl give us a guide
- Don't try to model less quantifiable impacts (e.g. lifestyle changes; ecosystem services): use subjective judgement supported by informed stakeholder engagement

What models/research?

- Comparative risk analysis as part of integrated dose assessment: put risks in context of more important health risks (e.g. <u>natural/cosmic</u> <u>radiation</u>, stress, poor diet, air pollution, overweight, passive/active smoking);
- Effects on organisms are not necessarily important from an ecological perspective but are very important in public communication.

Social, mental health and economic impacts of Chernobyl

"The mental health impact of Chernobyl is the largest public health problem unleashed by the accident to date"

UN/WHO/IAEA Chernobyl Forum Report, 2006

- Dose is not the most important health factor!
- Most important health factor is the sense of control and empowerment in people
- Effort in education and communication needs to equal clean-up effort.

Grigory Mamonin, Forester