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Freshwater internal doses - s

minor compared to terrestrial

- Drinking water: dose very minor at this
stage (c.f. ~ 6 Bg/l in some natural waters);

- Freshwater fish/foodstuffs — activity
concentrations/doses can be very high, but
doses generally low (low consumption
rates) except to critical groups;

- Important to focus on dose, not activity
concentration (where possible).
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External doses

m River bank/coastal occupancy;,
m Very minor dose from water,

m Swimming ? Minor except possibly for
close contact with contaminated sediment.
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Assessing aquatic foodchain doses s
from 137.134Cs and 3H

m 3H: Weak beta ~ Annual Limit of Intake ca. 24

MBq for 1 mSv y! effective equivalent dose (c.f.
75 kBq for Cs-137).

m For 3H: If input not OBT then no
bioconcentration: Equilibrium CF ~ 1

m Past high 3H input to catchment could reach
aquatic food chain with delay via
sediment/detritus, but not expected to be
Important in dose formation.
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Aquatic food webs U"

Portsmouth

(A) North temperate lake web (B) Costa Rican stream web

NUTRIENTS

(A) After Rudstam et al. 1992. (B)-(C) From Winemiller 1990; used with permission.
From: The Diversity of Fishes, G.S. Helfman et al., Blackwell, Oxford 1997.
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Interaction of Cs-137 with lake SnGerereet
sediments
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potassium model
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New Model:
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Fish
Models should be as simple as possible...
e

...but no simpler:

Size/trophic level/age effect

1400 ~

—
r
o
o

137Cs Concentration (Bq kg™)

R*=0.47

500 1000
Wet weight of fish (g)

1500

Radiocaesium in fish in the Kiev Reservoir
(Sansone and Voitsekhovitch, 1996)



Cs-137 in Lake Vorsee, Germany
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Predicted Cs-137 in lake water
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Chaisan, K., Kameda, Y. (Chiba Inst Technol.), Smith J.T., unpubl. res.
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Long timescale changes...
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Smith, J.T. et al. (2000) Chernobyl’s legacy in food and water. Nature, 405.

Cs-137 in European Rivers (Dissolved)
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Assessing the impacts of
countermeasures/
ifestyle changes
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A Countermeasure experlence Portsmouth

Smith J.T., Kudelsky A.V., Ryabov I.N., Hadderingh R.H., Bulgakov
A.A. (2003) The Science of the Total Environment 305, 217-227.
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Result of 10 x increase in potassium Periomouth
In L. Svyatoe, Belarus
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Model prediction - perch "
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Changes In water chemistry s
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Disadvantages of countermeasures

m Often very expensive — Is the cost per
Person-Sv justifiable ? E.qg. if 10-20 psnSv =
one averted fatal cancer, and a life is valued
at $X Million, cost per psnSv < $X M +10-20

m Dose to clean-up workers; waste generation

m Potential unintended consequences to
humans (e.g. salting fish can reduce Cs, but
excessive salt intake may outweigh health
benefit) and ecosystem damage.
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Lifestyle changes

m Ban on consumption of fish/aquatic
foodstuffs; economic value of commercial
and sport fishing, but catch and return
possible for sport fishermen;

m Occupancy/Swimming/boating ban ?
Unlikely to be needed if area is suitable for
re-settlement, but this needs to be

assessed.
o —— e
Applicability/reliability of models s

for Fukushima conditions

m Need to critically test models, not validate
them:

m Indications are that models developed
post-Chernobyl will overestimate food
chain doses for Cs but underestimate
physical redistribution by sediment;

m Need model endpoints at an appropriate
spatial scale — if dose limitation, not Bg/kg
IS the objective, spatial scale is large.
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What models/research do we need ? ™™

m Need to critically evaluate countermeasures by
economic and dose cost/benefit;

m Very long term Cs-137 trends ? Weapons Test
and Chernobyl give us a guide

m Don’t try to model less quantifiable impacts (e.g.
lifestyle changes; ecosystem services): use
subjective judgement supported by informed
stakeholder engagement
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What models/research?

m Comparative risk analysis as part of integrated
dose assessment: put risks in context of more
Important health risks (e.g. natural/cosmic
radiation, stress, poor diet, air pollution,
overweight, passive/active smoking);

m Effects on organisms are not necessarily
Important from an ecological perspective but are
very important in public communication.
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Social, mental health and economic
Impacts of Chernobyl

“The mental health impact of Chernobyl is
the largest public health problem
unleashed by the accident to date”

UN/WHO/IAEA Chernobyl Forum Report, 2006
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* Dose is not the most
important health factor !

* Most important health
factor is the sense of
control and empowerment
in people

o Effort in education and
communication needs to
equal clean-up effort.

Grigory Mamonin,
Forester




