

- Estimation of stability of Cs in soils by chemical treatment -

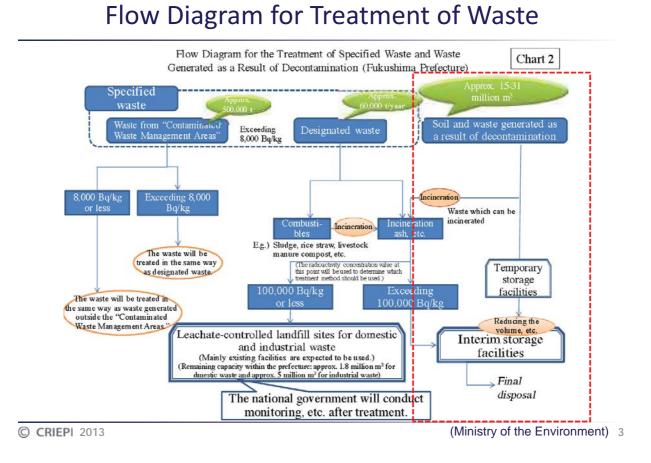
Shingo YOKOYAMA¹, Kotaro NAKATA¹, Shinichi SUZUKI², Kenichi ITO³, Tamao HATTA⁴, Hirohisa YAMADA⁵

1: Central Research Institute of Electric Power Industry (CRIEPI) 2: Japan Atomic Energy Agency (JAEA) 3: University of Miyazaki 4: Japan International Research Center for Agricultural Sciences (JIRCAS) 5: National Institute for Materials Science (NIMS)

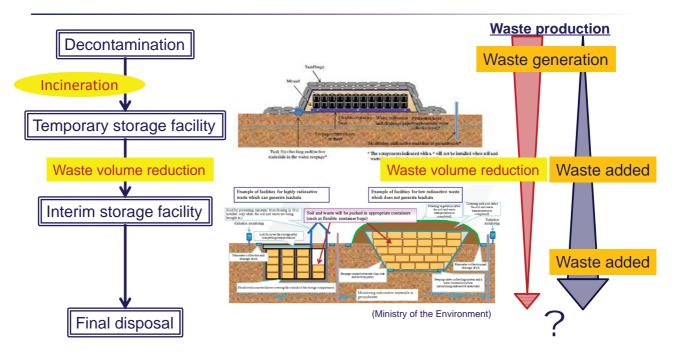
> Caesium Workshop October 1st, 2013

C CRIEPI 2013

1


Outline

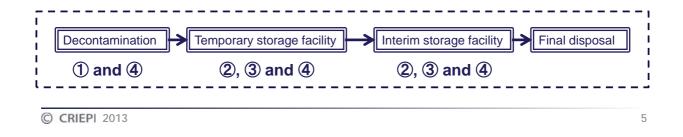
Chemical treatment for waste volume reduction


Cs fixation in clay minerals

Stability of Cs in soil

 Future work of chemical treatment for waste volume reduction

Waste Production from Decontamination to Final Disposal


Waste volume reduction in the process to the final disposal

Possibility of Waste Volume Reduction in the Process to the Final Disposal

① Reduction of waste generation

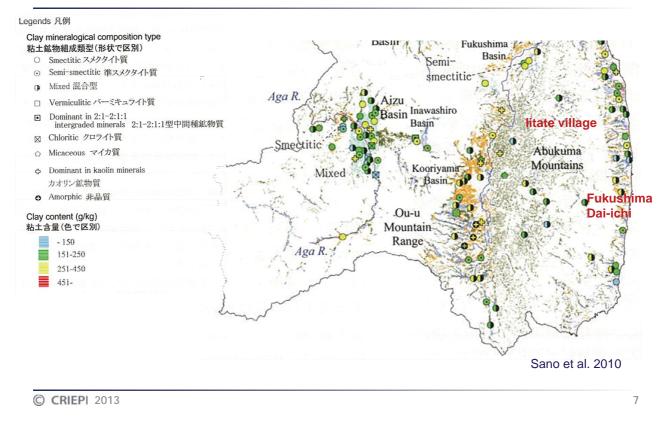
e.g. *Plowing to replace surface soil with subsoil

- **②** Volume reduction of generated waste
- e.g. *Classification, *Incineration, *Chemical treatments
- **③** Suppression of added waste generation
 - e.g. *Rationalization of storage facility design and operation
- **④** Prevention of re-contamination

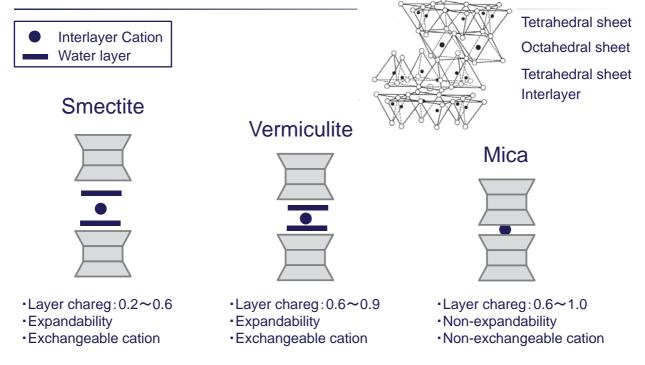
Chemical Treatment for Waste volume Reduction

Direct waste volume reduction by chemical treatment

For volume reduction of generated wasteFor recovery of Cs from soil waste


- □ Extraction using inorganic and organic cations [ion exchange]
- □ Acid and alkaline treatment [dissolution of soils]
- □ Sequential extraction [ion exhagne, dissolution of soils]

Indirect waste volume reduction by chemical treatment


For reduction of waste generationFor suppression of added waste generation

Estimation of stability of Cs in soil waste
Estimation of mobility of Cs in soil waste

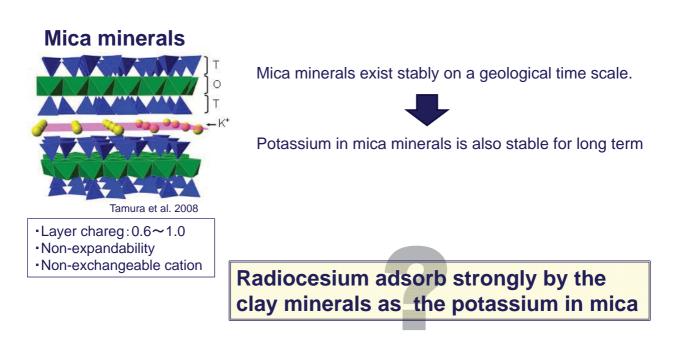
Clay mineralogical composition of paddy soil

Key Clay Minerals for Cs Sorption

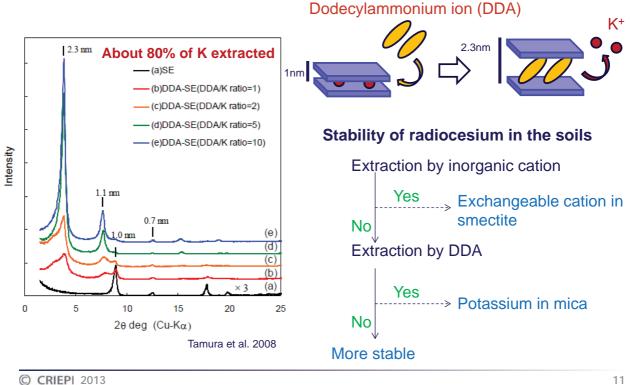
Cs Fixation in Clay Minerals

Cesium fixed by clay minerals against five extractions with 0.1 *N* chloride solutions of extracting cation.

Saturating	Extracting cation	Cs fixed, µg/g							
cation		Bt	III	KI	Mt	Musc	Vr		
K+	K+	20	18	1	0	21	17		
K+	Ca ²⁺	69	66	6	7	60	54		
Ca ²⁺	K+	73	72	1	5	65	64		
Ca ²⁺	Ca ²⁺	116	105	8	8	119	67		


Sawhney 1964

Bt: Biotite (Mica), III: Illite (Mica), KI: Kaolinite, Mt: Montmorillonite, Musc: Muscovite (Mica), Vr: Vermiculite


© CRIEPI 2013

9

Natural Example of Cation Fixation in Clay Minerals

Alkylammonium Treatment for K Extraction

C CRIEPI 2013

Sample and Methods

Sample:

Rice paddy, Farm land and Play ground (litate village, Fukushima prefecture)

Extraction experiment using inorganic cations:

Soil : Solution ratio: Concentration of solution: Reaction time: Agitation: Measurement:

20g(wet):200mL 1mol/L over 90min Handshake(15min intervals) Cs-134 + Cs-137

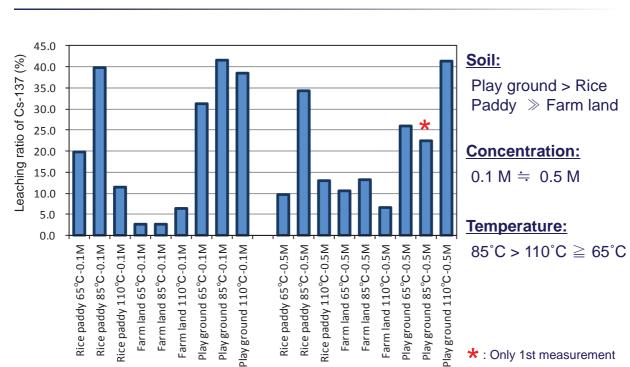
Extraction experiment using DDA:

Soil : Solution ratio: Concentration of solution: **Temperature:** Reaction time: Measurement:

2.5g(wet):100mL 0.1 and 0.5 mol/L 65, 85 and 110 °C 2 days + 1 dayCs-137

Leaching Ratio in Each Extraction Experiment using Inorganic Cations

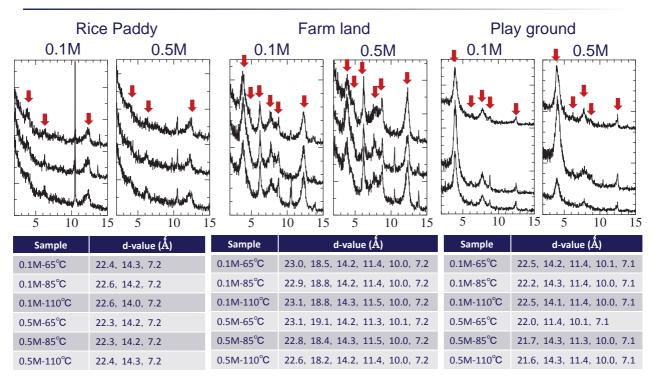
Rice paddy			Farm land			Play ground		
Reagent	Reaction time (min)	Leaching ratio (%)	Reagent	Reaction time (min)	Leaching ratio (%)	Reagent	Reaction time (min)	Leaching ratio (%)
Ammonium nitrate	101	3.6	Ammonium nitrate	99	7.2	Ammonium nitrate	92	4.2
Ammonium acetate	107	3.6	Ammonium acetate	96	6.8	Ammonium acetate	97	4.5
Ammonium dihydrogen phosphate	111	3.4	Ammonium dihydrogen phosphate	89	4.7	Ammonium dihydrogen phosphate	108	4.4
Ammonium hydrogen carbonate	100	3.4	Ammonium hydrogen carbonate	95	5.8	Ammonium hydrogen carbonate	131	5.2
Ammonium chloride	84	2.7	Ammonium chloride	97	6.3	Ammonium chloride	95	3.8
Potassium dihydrogen phosphate	95	-	Potassium dihydrogen phosphate	100	3.4	Potassium dihydrogen phosphate	104	5.2
Potassium chloride	97	-	Potassium chloride	100	7.4	Potassium chloride	91	4.5
Sodium dihydrogen phosphate	232	-	Sodium dihydrogen phosphate	120	-	Sodium dihydrogen phosphate	94	5.1
Sodium chloride	107	3.7	Sodium chloride	89	-	Sodium chloride	91	2.2
Aluminum chloride hexahydrate	83	-	Aluminum chloride hexahydrate	91	-	Aluminum chloride hexahydrate	97	1.2


The leaching ratio of the radiocesium (Cs-134 + Cs-137) from the soil was less than 7 %

Radiocesium is fixed in the soils as the potassium in mica minerals

© CRIEPI 2013

R CRIEPI


13

Leaching Ratio in DDA Treatment

XRD Patterns and d-values of Clay Minerals

C CRIEPI 2013

15

Layer Charge of Clay Minerals in Soil

Soil-Conc.	Temp.	d-value			Layer Charge			52
		Peak 1	Peak 2	Peak 3	Peak 1	Peak 2	Peak 3	
	65	22.4		14.3	0.68		0.27	
Rice paddy-0.1M	85	22.6		14.2	0.69		0.26	19 19 19 19 19
	110	22.6		14	0.69		0.26	
	65	23	18.5	14.2	0.71	0.39	0.26	ਨੂੰ + * /4' ਓ 15 - + * /4'
Farm land $-0.1 M$	85	22.9	18.8	14.2	0.70	0.40	0.26	E HENGLATER TO B 13
	110	23.1	18.8	14.3	0.71	0.40	0.27	This study
	65	22.5		14.2	0.68		0.26	
Play ground – 0.1M	85	22.2		14.3	0.67		0.27	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Hean layer charges per half-unit cell
	110	22.5		14.1	0.68		0.26	FIG. 5. Mean layer charges vs. d(001) spacings of dodecylammonium ion (nC = 12)-exchange 2:1 clay minerals.
	65	22.3		14.2	0.67		0.26	
Rice paddy—0.5M	85	22.3		14.2	0.67		0.26	High-Charge: Mean Layer Charge = (d-value - 8.71) / 20.25
	110	22.4		14.3	0.68		0.27	Low-Charge:
	65	23.1	19.1	14.2	0.71	0.41	0.26	Mean Layer Charge = (d-value - 5.52) ∕ 32.98
Farm land $-0.5M$	85	22.8	18.4	14.3	0.70	0.39	0.27	Olis et al., 1990
	110	22.6	18.2	14.2	0.69	0.38	0.26	, , , , , , , , , , , , , , , , , , ,
	65	22			0.66			-
Play ground – 0.5M	85	21.7		14.3	0.64		0.27	
	110	21.6		14.3	0.64		0.27	

Clay minerals with high layer charge (i.e. Vermiculite and Mica minerals) are contained in each soil.

Conclusion

Rice paddy, Play ground

Cs in the soil is hardly extracted by chemical treatment using inorganic cation.
Most extracted Cs-137 by DDA treatment exist in the clay minerals with high layer charge (i.e. vermiculite and mica minerals).

□60% of Cs-137 contained in the soil is not still extracted by DDA treatment.

Farm land

Cs in the soil is hardly extracted by chemical treatment using both inorganic cation and DDA.

Cs-137 contained in the soil is probably fixed in mica mineral because unreacted mica mineral is observed after DDA treatment.

In natural environment, Cs in the soil is stable as the potassium in mica.

© CRIEPI 2013

17

Future Work for Waste volume Reduction

Direct waste volume reduction by chemical treatment

Environmentally-friendly systems

- Low waste solution (e.g. recycle of reagent solution)
- Development of adsorbent to recover Cs from solution
- Effective utilization of the soil waste after chemical treatment

Indirect waste volume reduction by chemical treatment

- Quantitative estimation of each affecting factor to stability of Cs
 - Concentration of Cs in the soil
 - Clay mineralogical composition of the soil
 - Time-dependent effect
 - wet-dry cycle