Cs Adsorption and Related Reactive Dynamics in Frayed Edge of Micaceous Minerals

M. Okumura, H. Nakamura, and <u>M. Machida</u> CCSE, Japan Atomic Energy Agency

Supported by T. Yaita's Project (Fukushima) "Cs Adsorption-Desorption on Clay Minerals for Waste Reduction" Discussion T. Yaita, S. Suzuki, T. Ohnuki, T. Ikeda, T. Kitamura (JAEA) Y. Ohnishi(PNNL) A. Nakao (Kyoto Pref. Univ.) K. Sakuramoto (MST) K. Fukuzawa, K. Kato (Mizuho) A.Fujiwara, K. Mori (Ryoka)

K. Nishihara, K.Okazaki (Advance)

Outline

- **1**, Objectives of Atomistic Calculation Studies
- 2, Models and Methods
- 3, Calculation Results
- 4, Conclusion

1, Objectives of Atomistic Calculation Studies

EMP: electron microprobe, SEM: scanning electron microscopy, XMP: X-ray microprobe

Frayed Edges of Micaceous Minerals Strong Affinity ?

2. Models and Methods

Muscovite:

Adsorption Sites (Muscovite):

2. Models and Methods

Calculation Methods:

First-Principles Calculation

Target : Electrons (Electronic Structure)

- Interaction between atoms is calculated.
- Small System

Molecular Dynamics

Target : Atoms & Molecules

 interaction between atoms is assumed as force potential

·Large System

2. Models and Methods

Calculation Methods:

First-Principles Calculation

Target : Electrons (Electronic Structure)

- Interaction between atoms is calculated.
- Small System

Molecular Dynamics

Target : Atoms & Molecules

• interaction between atoms is assumed as force potential

Large System

3, Calculation Results

Simple Mechanism:

Ion Radius Difference

14

н..н

M. Okumura, H. Nakamura, M. Machida, Journal of the Physical Society of Japan 82, 033802 (2013).

2. Models and Methods

-1.4

0

1

2

3

Chemical Bond:

ALOSIOCS

Covalent Bond

2. Models and Methods

Covalent Bond:

2. Models and Methods

[Kr].4d¹⁰.5s².5p⁶6s¹

2. Models and Methods

21

- Muscovite ⇒ K is replaced with Cs
- Results ⇒ Density of States (E)

3, Calculation Results

3, Calculation Results

3, Calculation Results

Mechanism for Covalent Bonding:

Cs Nuclear Charge is relatively large

Inner orbital is strongly contracted

Cs (5s, 5p) Energy Levels ~ O(2s,2p) levels

Atomic Orbital

Molecular Orbital

30

4, Conclusion

1, The frayed edge site really shows strong affinity for Cs

The mechanism: **Ion radius difference** Interlayer distance of the frayed Edge ~ Cs diameter

2, Cs-Oxygen chemical bond is partly covalent.

 $Cs(5s5p) \sim O(2s2p)$: Energy levels are overlaped

Ionic+Covalent Bonding Character is more strong

Future Tasks:

Cs desorption

Simulation for the Chemical Bond (Cs-O) Cut