Fundamental approaches toward development of radiocesium removal methods from soil and the other related materials, waste reduction and management optimization

Chair, T. Yaita, Facilitator, I. McKinley

Talks in this session

Session 2: Fundamental approaches toward development of radiocaesium removal methods from soil and other related materials, waste reduction and management optimization

Monday September 30th 14:20-17:20

14:20~15:00 Introduction of study on the Cs adsorption-desorption on clay minerals for waste reduction and adsorption mechanism from the standpoint of materials science (T. Yaita)

15:20~16:00 Validation of uptake processes of radionuclides such as Cs on clay minerals by EXAFS (R. Dähn, PSI)

16:00~16:40 Molecular mechanisms and selectivity of Cs binding to phyllosilicate minerals with implications for fate and transport in the environment (K.M. Rosso, PNNL)

16:40~17:20 Caesium and other radionuclide retention by geochemical and engineered barriers (S.N. Kalmykov, MSU)
Talks in this session

Tuesday October 1st - 9:00-17:20

9:00~9:20 Cs Adsorption and related reactive dynamics in frayed edges of micaceous minerals (M. Machida, JAEA)

9:20~9:40 Molecular dynamics simulation for Cs adsorption behaviour under various kinds of conditions (T. Ikeda, JAEA)

9:40~10:00 Finding and analyses of soil particles adsorbing radioactive cesium in Fukushima (T. Kogure, Tokyo University)

10:00~10:20 Interpretation of Cs behaviour in waste reduction process by X-ray imaging and position sensitive XAFS methods (Y. Okamoto, JAEA)

10:40~11:20 Sorption-desorption behavior of Cs in subsurface materials: observations and modelling approaches (M. Ochs, BMG)

11:20~12:00 Overview of chemical treatments for radioactive waste (S. Yokoyama, CRIEPI, T. Kobayashi, JAEA)

13:00~13:40 Importance of understanding clay-Cs association for reduction, storage and disposal of waste from decontamination activities in Fukushima (T. Sato, Hokkaido University / K. Ito, Miyazaki University)

13:40~14:20 Discussion / brainstorming (T. Yaita, JAEA)
Session 2 - Question

1. How we make efficient use of basic results for practical waste reduction? *Relationship between field work and laboratory scale experiment?*

2. Are there any effective chemical treatments and the other active methods for waste reduction? *These methods position for overall waste reduction?*

3. How we make fundamental results apply for elucidation of long-term radioactive cesium behavior?

Introduction

CORASSE, Fukushima/Japan, September 30th - October 3rd, 2013

Introduction of study on the Cs sorption-desorption on clay minerals for waste reduction and sorption mechanism from the standpoint of materials science

Tsusyoshi YAITA
Japan Atomic Energy Agency
Why do we need waste reduction?

- Soil Wastes
- Temporary
- Strategy for Waste treatment
- We have to reduce waste volume

What is soil waste reduction?

1) Wet Classification, incineration and Chemical Treatment (positive)
2) Deep Plowing etc. (passive)

On assumption that decontamination methods should be applied for actual spot based on effectiveness, cost, secondary waste production, environmental impact and so on,

1) We have to develop reasonable chemical treatment methods,
2) We have to evaluate stability in soil especially against weathering.
Vermiculite, Illite the others

- Important clay minerals in Fukushima
- Dominant adsorptive clay minerals
- Irreversible Cs was included.

Cs sorption isotherm for Na-illite in 0.1 M NaClO₄ (Potnssot et al., 1999)

There are three Cs sorption sites for in illite.

Cesium distribution in muscovite

Schematic diagram of the mica structure: TOT, Tetrahedral-octahedral-tetrahedral sheet structure; K and Cs, interlayer cations; edges are “frayed” by the removal of interlayer K⁺. Potential sites for Cs⁺ sorption: (1) cation exchange sites on the basal plane, (2) edge sites, (3) frayed edge sites, (4) replacement of K⁺ by Cs⁺ in interlayer sites.

Mckinley et al., 2004
How to decontaminate radioactive Cs from soil? How to evaluate Cs stability in soil?

1) H₂O, CO₂, Oxidation/Reduction
2) Ion Exchange
 NH₄⁺, much K⁺
 Cs⁺
3) Acid treatment
 Removal and holding back in solution
 (COOH)₂⁺ + Al³⁺ → [Al(COO)₂]⁺
 Breaking silicate structure
 SiO₂ + 6HF(aq) → H₂SiF₆ + 2H₂O
4) High temperature
 Alkaline Fusion
 Detailed speciation of cesium in soil (clay mineral) would be important to develop decontamination method. In addition, weathering resisting properties would be also evaluated.

Reversible
Van der waals bonding (Physisorption)
0.25eV (25kJ/mol)

Reversible and irreversible
Ionic and Covalent bonding (Chemisorption)
0.42 ~ 4.2eV (40 ~ 400kJ/mol)

Project Structure

Project Head (JAEA)
Project Leader: T Yaita

JAEA Fukushima Env. Center
JAEA QuBS

Strategy for Waste Reduction (Hokkaido Univ.)
Leader: T. Sato

Miyazaki univ., NIMS, Hokkaido univ., CRIEPI

Chemical Treatment (JAEA)
Leader: S. Suzuki

JAEA QuBS
CRIEPI
JAEA NS&E

Wet Classification (NIMS)
Leader: Yamada

JAEA QuBS

Technical Support, New Science

Electronic & Molecular structures
JAEA QuBS
Actinide Coordination Chem. G, Sur. Dynamics G, Quantum Dynamics

Cs Ad/Des study (JAEA)
Leader: T. Yaita

Modeling, Simulation
JAEA CCSE, JAEA Quantum Simulation G, NIMS, Okayama Univ.

Imaging
NIMS, Tokyo univ., JIRCAS

Picking up problem

12
Elucidation studies on Cs sorption and desorption toward Clay Minerals

Cs adsorption/desorption structures by EXAFS, STXM and DFT calculation.
Sample preparation of Cs-clay mineral system
Cesium and water was added to 300mg clay minerals to adjust 100 ppm mixed solution. This mixed solution was shaking gently under RT for two days, and then, was filtered with membrane filter. The Cs adsorbed clay mineral was evaporated to dryness extremely gently under atmospheric pressure for one night.

Comparison with XAFS experiments

- ~3Å: Cs⁺-basal oxygen (O_b) & water oxygen
- ~4Å: Cs⁺-Si (Al) of tetrahedral sheet
- ~5Å: Cs⁺-apical oxygen (O_a)
Cs-Vermiculite by EXAFS

QXAFS SPring-8 BL11XU

Radial structural functions of Cs on vermiculite

Cs-O₁: $2.97 \, \text{Å}$
Cs-O₂: $3.25 \, \text{Å}$
Cs-Si: $4.04 \, \text{Å}$
Cs-Cs: $5.56 \, \text{Å}$

Slight covalency?

*Same distances as Vermiculite

Cs-illite by EXAFS

SPring-8 BL11XU

Radial structural functions of Cs on illite

Cs-O₁: $2.98 \, \text{Å}$
Cs-O₂: $3.20 \, \text{Å}$
Cs-Si: $4.01 \, \text{Å}$
Cs-Cs: $5.50 \, \text{Å}$

*Same distances as Vermiculite

Used model on curve fitting
Cs adsorption Dynamics by DXAFS

How does Cs sorb on clay minerals?

Estimated Phenomena

Radioactive cesium derived from Fukushima Dai-ichi power plants deposited on the ground, and moved slightly through ground water or precipitation. Finally, Cs generally adsorbed on clay minerals and stabilized.
Cs adsorption dynamic studies by DXAFS

Snapshot of sorption on vermiculite

<table>
<thead>
<tr>
<th>Post edge</th>
<th>Pre edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 s</td>
<td>150 s</td>
</tr>
<tr>
<td>90 s</td>
<td>180 s</td>
</tr>
<tr>
<td>100 s</td>
<td>240 s</td>
</tr>
<tr>
<td>110 s</td>
<td>300 s</td>
</tr>
<tr>
<td>120 s</td>
<td>600 s</td>
</tr>
</tbody>
</table>
Results of Time dependent RSF

EXAFS

Conventional XAFS data

Time dependence RSF

Time dependent EXAFS parameters

- Physical mixture (CsCl)
- Water-in and hydration
 - E. shift, R(Cs-O) decreases
 - ⇒ CsCl → Cs+(H2O)n
- R(Cs-Si) decreases
- N(Cs-Si) increases
 - ⇒ layer collapse
 - E shift still decreases
 - ⇒ dehydration & forming ionic bond with clay
- E shift gradually increase
 - N(Cs-O) increase & R(Cs-O) apparently keep constant
 - ⇒ forming covalent and ionic bonds

Lewis acid

Lewis base

Collapse

Time (s): 100 200 300

R(Cs-O) (Å): 3.26 3.28 3.30

N(Cs-O): 4.5 5.0 5.5

R(Cs-Si) (Å): 3.98 4.00 4.02

E shift (eV): -0.2 -0.1 0.0
Interpretation of TR-DXAFS

Cs adsorption model based on TR-DXAFS

Clay mineral

Time /s

450

300

150

0

0

2

4

6

8

R /Å

TR-DXAFS images

Collapse

Hydration and dehydration

Water

Cesium

Potassium

Cesium concentrated at Frayed edge site

Cs desorption behavior by acid treatment

We can observed several sorption sites in clay mineral?
Time dependent EXAFS analysis on acid treatment

1M HNO₃, 100°C

1M Oxalic acid, 100°C

Cs-O₁ interaction (2.97 Å) was acid resisting property.

This result would probably relate with ultra cesium behavior.

STXM analysis of Cs-Vermiculite
Cs Map after Treatment by Oxalic Acid

After oxalic acid treatment, soluble Fe disappeared, while insoluble Fe distribution was correlated with Cs.
Comparison of XANES for Cs and Fe between before and after treatment

1 M Oxalic acid
100° C

Chemical bond of Cs in clay minerals

How strong is the chemical bond of Cs with clay minerals?
Covalent bond of Cs in clay mineral

There are two sites in clay minerals from Cs-O.

Cs-O₁: 2.98 Å ≈ Rcov₄₅°Cs+O=2.95Å*
Cs-O₂: 3.20 Å ≈ Rionic₄₅°Cs=3.28Å**

*Pekka et al., 2009, **Shannon et al., 1976.

A Cs-O distance contains several type of interaction between Cs and clay mineral.
Reversible or Irreversible?

\[K_n \]

\[
\begin{align*}
A \cdot B & \rightleftharpoons A + B \\
-RT \ln K_n & = \Delta G = \Delta H - T \Delta S
\end{align*}
\]

\[\Delta H \approx 50 \text{ kJ/mol} \]

\[\Delta H \approx 20 \text{ kJ/mol} \]

\[\Delta H \text{ several hundred?} \]

\[\Delta H \text{ several hundred?} \]

Cs-O_{2} = 3.25Å

Weak covalent bond

Cs-O_{1} = 2.97Å

Strong covalent bond

Summary and Conclusion

1) From EXAFS and DFT analyses for Cs-Vermiculite and Illite, local structure around Cs were determined.

1) From Cs adsorption dynamics study by DXAFS, sorption mechanism of Cs on clay minerals was observed.

2) Chemical treatment and following STXM analysis suggested that there are several specific sorption site toward Cs in clay minerals.
4) DFT, MD calculations, and EXAFS results suggested that chemical bonds of Cs with clay minerals showed covalent bond features, and we begin to consider reasonable decontamination methods.

End of Talk

Thank you for your attention