Objectives of the Workshop and Challenges for Remedial Actions and Waste Management in Fukushima

Fukushima Environmental Safety Center Japan Atomic Energy Agency (JAEA) Mikazu Yui

2

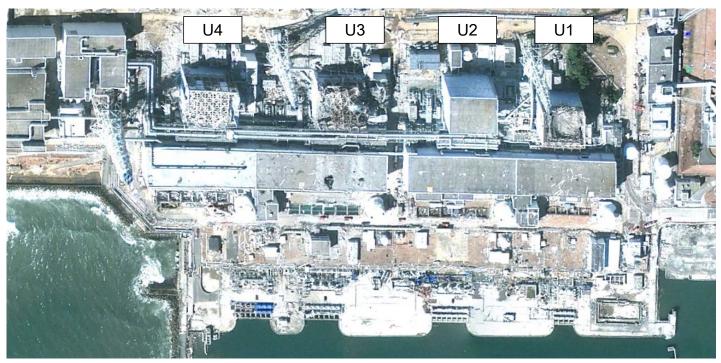
Contents

- •Background and status of off-site Fukushima contamination / remediation
- Overall goals of workshop
- Session 1-3 Questions; e.g.
 - How to decontaminate and how to reduce volume of wastes produced?
 - How will the contamination develop in the future?
 - How will public acceptance be gained?
 - What can scientists do to address these concerns?
- Approach and tools used in the workshop

Background and status of off-site Fukushima contamination / remediation

Status of

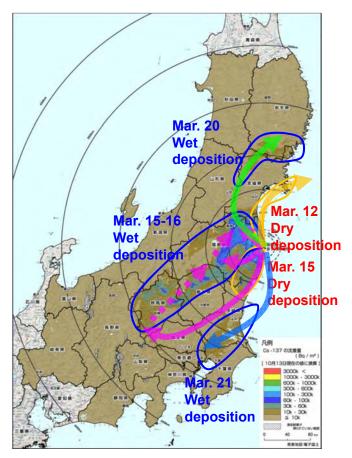
- Fukushima NPP accident
- Cs distribution
- R&D for implementation of decontamination
- Studies of Cs Behavior


Background to Fukushima NPP accident

11 March, 2011

Overview of the Fukushima NPP site

The disastrous earthquake and tsunami on March 11,2011 devastated Fukushima Daiichi Nuclear Power Station.



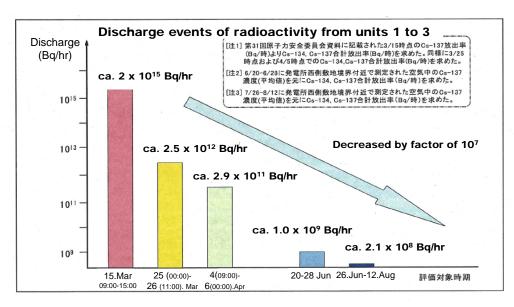
from Google maps HP

Estimated Deposition of Cs-137

- Deposition of Cs-137 was estimated by WSPEEDI model, with input from measured surface soil concentration and meteorological data.
- Radioactive material deposited by wet and dry deposition processes depending on wind directions at the time of specific releases.

H. Nagai *et al.*, "Atmospheric dispersion simulations of radioactive materials discharged from the Fukushima Daiichi Nuclear Power Plant due to accident: Consideration of deposition process", The first NIRS symposium on reconstruction of early internal dose due to the TEPCO Fukushima Daiichi Nuclear Power Station accident, Chiba, Japan, 10-11 July, 2012

Estimates of integrated releases


Discharge of radioactivity from units 1 to 3

	NSC(Aug.24)	Estimation By JNES	Estimation by NISA
lodine-131	1.3 x 10 ¹⁷ Bq	1.3 x 10 ¹⁷ Bq	1.6 x 10 ¹⁷ Bq
Cs-137	1.1 x 10 ¹⁶ Bq	6.1 x 10 ¹⁵ Bq	1.5 x 10 ¹⁶ Bq

NSC: Nuclear Safety Commission of Japan (Aug.23, 2011)

JNES: Japan Nuclear Energy Safety Organization

NISA: Nuclear and Industrial Safety Agency

From T.Inoue, presentation at

GLOBAL 2011, Makuhari, Chiba, December 12-15, 2011

Comparison of Discharged Radionuclides from Fukushima Dai-Ichi NPP and Chernobyl NPP Accidents

1. Discharge of radionuclides from the NPPS

Fukushima Dai-ichi NPP

To atmosphere *1

131 : 1.3 × 10¹⁷ Bq 137Cs : 1.1 × 10¹⁶ Bg

• To ocean *2

131 : 2.8 × 10¹⁵ Bq ¹³⁴Cs

: 0.94 × 10¹⁵ Bq

¹³⁷Cs : 0.94 × 10¹⁵ Ba

*1 2011/8/23 NSC (Nuclear Safety Commission oj Japan *2 2011/4/21 TEPCO (Tokyo Electric Power Com.)

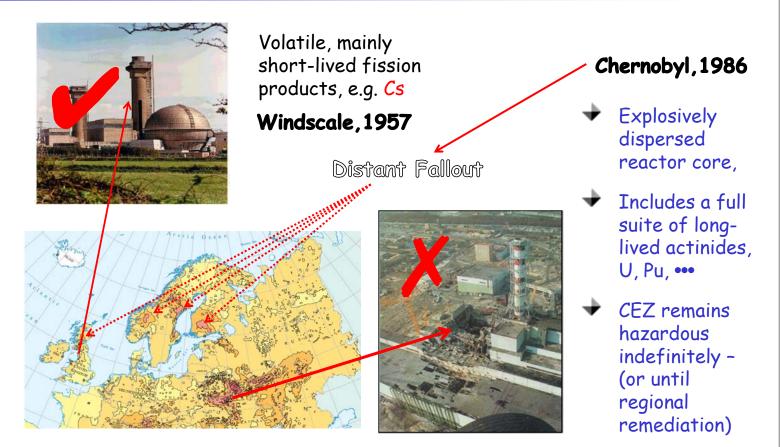
2. Land-use classification around the NPP site

Fukushima Dai-ichi NPP

- Urban area; <5%
- Paddy field; <10%
- Other field: <10%
- Forest; > 75%

Area contaminated by Cs-137 over 300kBq/m2

Chernobyl


Tota	l : 1.4 ×	10 ¹⁹	Bq					
131	: 1.8×	10 ¹⁸	Bq					
137 C	s : 8.5×	10 ¹⁶	Bq					
⁹⁰ Sr	: 1.0×	10 ¹⁶	Bq					
Total Pu : 3 × 10 ¹⁵ Bq								
*1 IAEA	"STI/PUB/1239	" (2006)						

Chernobyl (Av. Belarus)

- Agriculture; 43%
- Forest: 39%
- River & Lake; 2%

"Belarus in Figures" (March, 2010) From T.Inoue, presentation at GLOBAL 2011, Makuhari, Chiba, December 12-15, 2011

But Fukushima is NOT like Chernobyl!

Status of

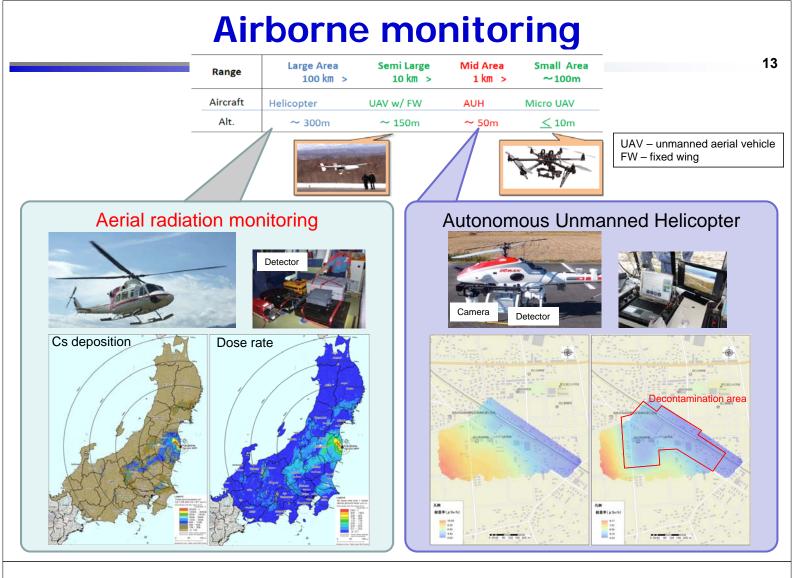
Cs distribution

Ground monitoring

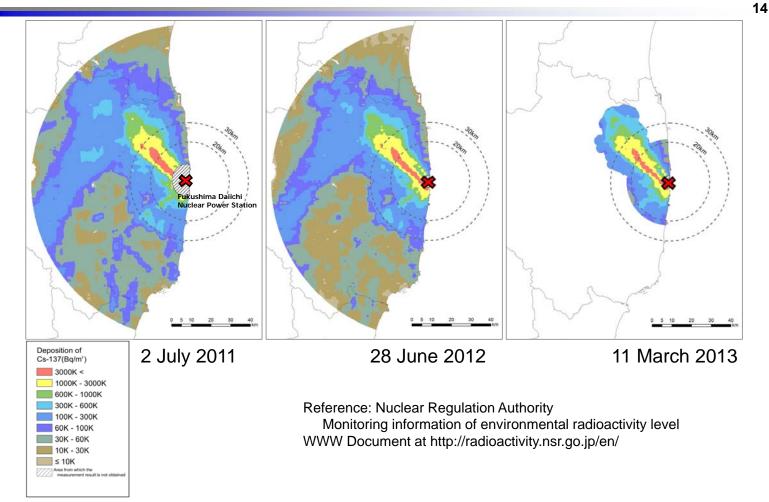
Soil sample collection and analysis

Measurement on ground (undisturbed flat fields) with a survey- meter

In situ measurement using a portable Ge gamma spectrometer



Mobile monitoring with the KURAMA system mounted in cars

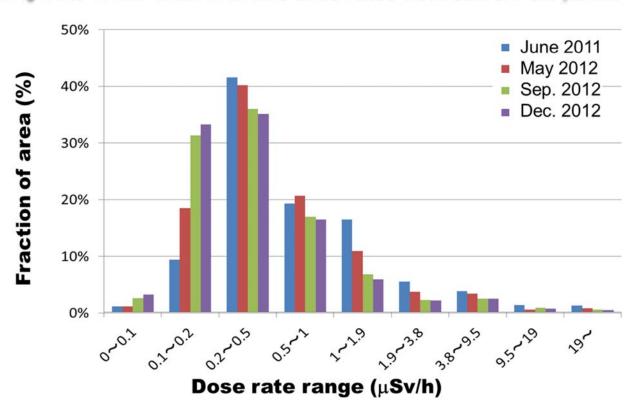

Radionuclide deposition distribution

Air dose rate distribution

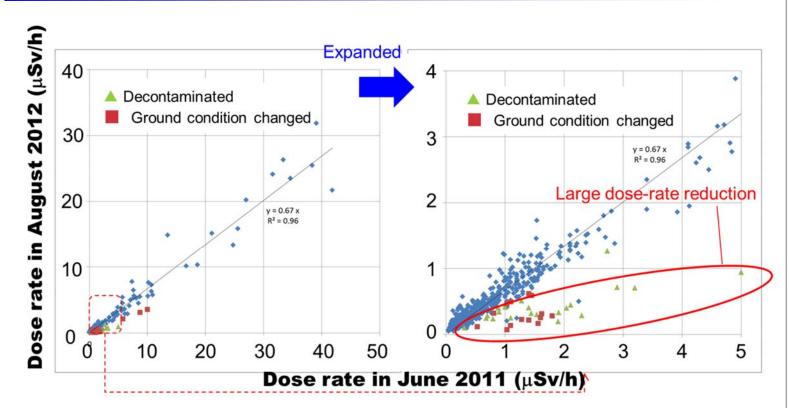
12

¹³⁷Cs distribution measured by aerial monitoring

Evaluation of additional accumulated effective doses over 50 years

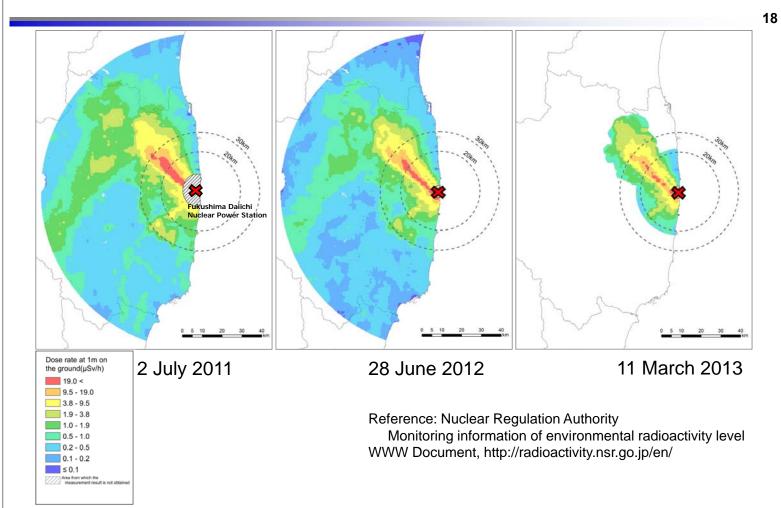

Maximum nuclide concentrations of soil (Bq/m²) were used. External exposures and inhalation due to re-suspension were evaluated.

	Half life	Maximum concentration (Bq/m2)	Effective dose for 50 years	
Nuclide			Conversion coef. (μSv/(Bq/m²))	Dose (mSv)
Cs-134	2.065 y	1.4×10 ⁷	5.1 × 10 ⁻²	710
Cs-137	30.167 y	1.5×10 ⁷	1.3×10 ⁻¹	2000(2.0Sv)
I-131	8.02 d	5.5×10 ⁴	2.7×10 ⁻⁴	0.015
Sr-89	50.53 d	2.2×10 ⁴	2.8×10 ⁻⁵	0.00061 (0.61 μSv)
Sr-90	28.79 y	5.7×10 ³	2.1×10 ⁻²	0.12
Pu-238	87.7 y	4	6.6	0.027
Pu-239+240	2.411×10 ⁴ y	15	8.5	0.12
Ag-110m	249.95 d	8.3×10 ⁴	3.9×10 ⁻²	3.2
Te-129m	33.6 d	2.7×10 ⁶	2.2×10 ⁻⁴	0.6


(Dose conversion coefficients from IAEA-TECDOC-1162)

Distribution of areas with different dose rates within the 80 km zone

• Areas more than 0.2 μ Sv/h are decreasing, less than 0.2 μ Sv/h increasing. • Nearly 70% of the total area has dose rates between 0.1-0.5 μ Sv/h.


Comparison of dose rates in air at 1 m between June 2011 and Aug. 2012

Dose rates in air decreased by more than 30%. (Physical decay : 25%) There exist locations showing large dose-rate reduction.

Dose rate distribution in air at 1m measured by aerial monitoring

1

1

What does this contribute further to information in slide 14? $_{\rm mckinley,\ 2013/09/10}$

19

Status of

R&D for implementation of decontamination

"Decontamination Pilot Project" by JAEA

- Prior to implementation of the national government's regional decontamination, the Cabinet Office commissioned a "Decontamination Pilot Project" from JAEA.
- The purpose of the project is to acquire technical data and knowledge to reduce the dose rates in living areas and provide integrated expertise for subsequent regional decontamination;
 - Check the availability and effectiveness of proven and new techniques
 - Determine associated costs, work duration, workforce requirements, waste generated and radiation exposure to workers
 - Establish waste management processes, including volume reduction of wastes and treatment of secondary wastes
 - Assess worker safety, including radiation protection
 - Establish optimal radiation monitoring procedures
 - Establish public communication approaches

Decontamination Pilot Project

Clean-up of Roads and Pavement

high pressure water

- surface stripping
- blasting

lce blasting

Clean-up of Houses

Iron shot blasting

Clean-up of Farmland

plow

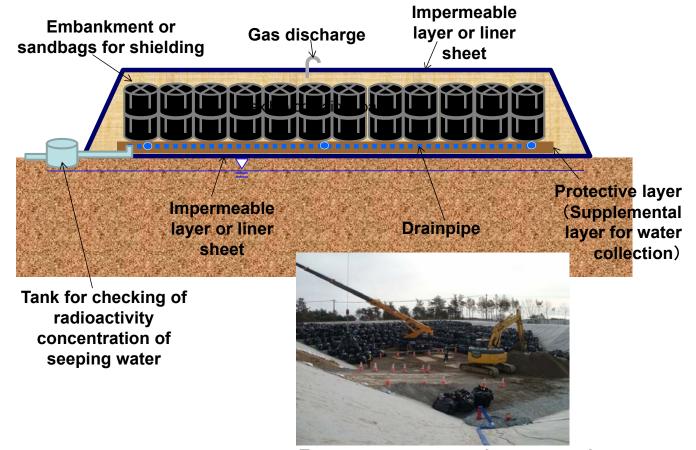
turf stripping

Clean-up of Trees and Forest

- weeding
- removal of leaf mold
- clipping
- water horsing

curing

removal of leaf mold

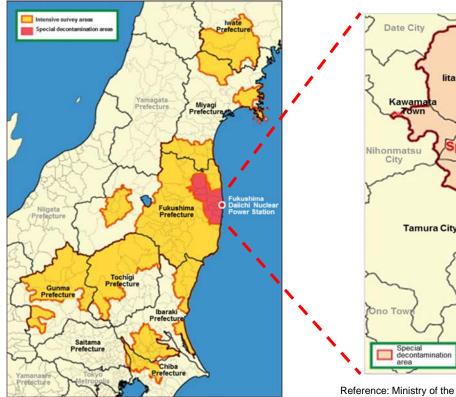

Before and After Clean-up

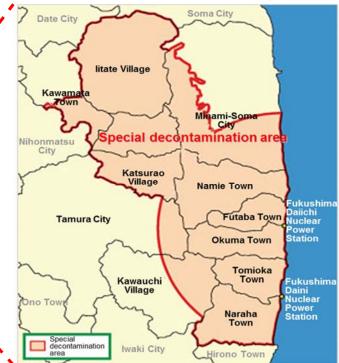
26

27

Temporary Storage of Waste

Temporary storage under construction


Special Decontamination Area(>20 mSv/y) :11 Municipalities
by National Government


Intensive Contamination Survey Area (1 to 20mSv/y) by Each Municipality Funded by Government :104 Municipalities, 8Profecture

:104 Municipalities, 8Prefecturs

Based on the Guidelines for Decontamination Works Issued by Ministry of the Environment

Special Decontamination Area and Intensive Contamination Survey Area

Reference: Ministry of the Environment Government Off-site Decontamination Measures WWW Document,http://josen.env.go.jp/en/documents/pdf/documents_02.pdf

STATUS OF

STUDIES ON Cs BEHAVIOR

Cs sorption behavior

Cs sorption can be significantly affected by:

Characteristics of solid phases present

➤ lonic strength of aqueous phase

Organic matter present

Critical factor is:

Degree of reversibility of Cs sorption on natural materials

Cs dissolved concentrations in water are now very low, thus

≻Cs sorption / uptake generally irreversible (or very poorly reversible)

>Cs transport associated with solid particles (suspensions, colloids), especially in fresh waters

Further Studies Needed for Decontamination work

Decontamination for Forest

➤Decrease in Waste Generation

➤Waste Storage and Disposal

Possible Recontamination processes

Based on Understanding of Cs Behavior in the Environment: In many cases may be dominated by sorption on clay minerals in the soil zone

The most difficult decontamination work is for forest

33

32

➤Forest covers about 70% of Fukushima Prefecture

Limited forest decontamination is reasonable, considering effective dose reduction, ecosystem conservation and prevention of risks like landslides

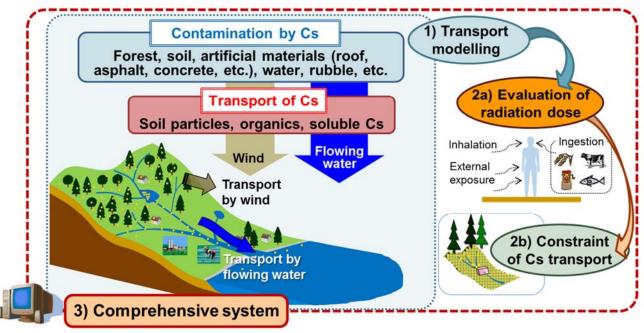
➤After decontamination, long-term investigation of the potential Cs source term from non-decontaminated forest is important.

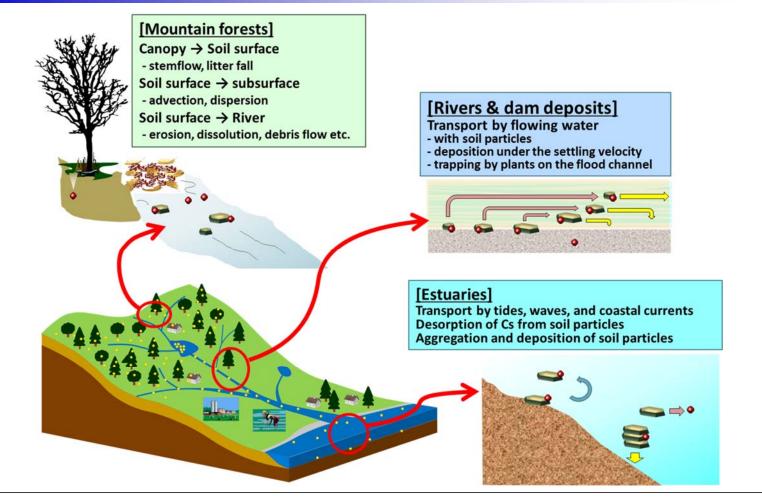
Based on this study, countermeasures to reduce Cs transport in relevant areas may also be considered.

Fukushima-TRACE Project

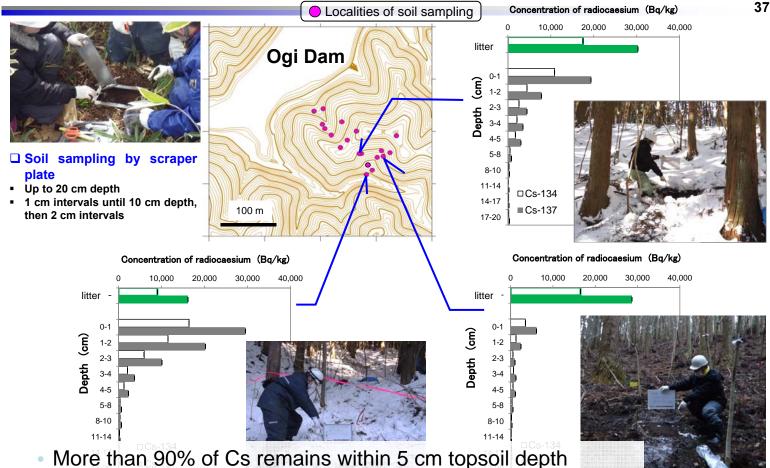
Long-term assessment of Transport of RAdioactive Contaminant in the Environment of Fukushima

⇒Studies on Cs Transport in the Forest
~ River ~ Reservoir(Dam, Lake)
~Estuary System.

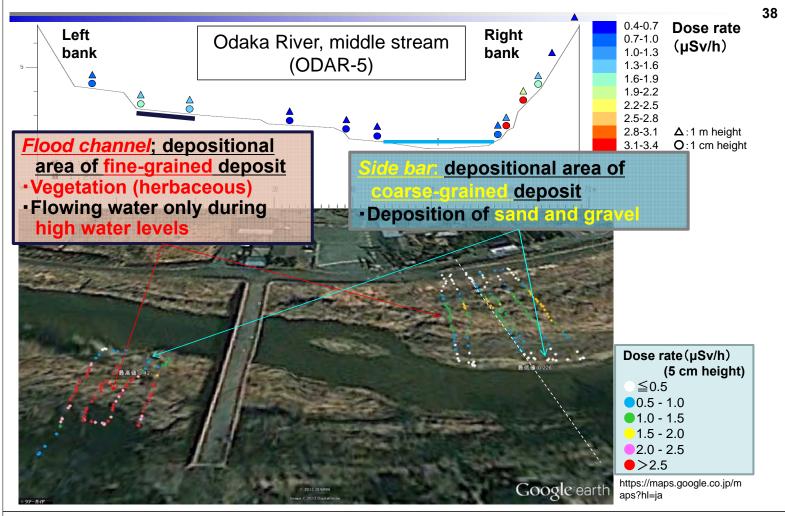



Overview of the Fukushima-TRACE project

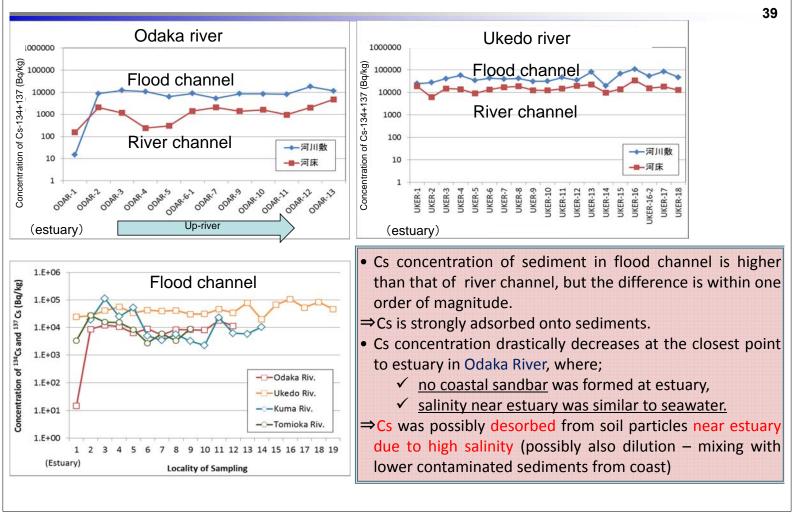
Objectives


- 1) Elucidation of transport behavior of radionuclides (esp. radiocaesium; Cs) from contaminated forest to biosphere and sea.
- Development of dose evaluation system and methodology to constrain Cs transport.
- Construction comprehensive system for prediction and constraint of radionuclide transport.

Key phenomena influencing Cs transport



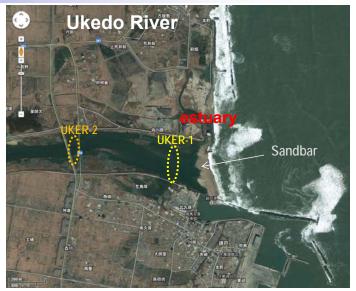
Depth profiles of Cs in forest topsoil



including the litter layer (~2 y after the accident).

Dose rate distributions in river sediment

Cs concentrations in river sediments



Salinity of river water

➤Observation: No coastal sandbar was formed at estuary.

Sample analyses of ODAR-1 and 2 show: Salinity near estuary was similar to seawater.

➤Observation: Coastal sandbar was formed at estuary.

Sample analyses of OKER-1and 2 show: Salinity near estuary was similar to freshwater.

Summary of Status

- Clear importance of understanding Cs behavior that will support development of practical ways for...
 - Decreasing waste generation during cleanup
 - Long-term assessment of the impact of Cs in untreated forest
- Continuous / focused R&D (F-TRACE project) is needed to decrease uncertainties and allow optimal treatment to assure a safe future for Fukushima.

Overall Goals of Workshop

- International expert review of current plans for F-TRACE / R&D supporting regional decontamination and waste management (technical QA)
- Summary of relevant international experience and assessment of relevance to Fukushima (mining of international Knowledge Base)
- Brainstorming to gain input for key identified challenges (capture of national / international tacit knowledge)
- Establishing contacts between experts in this field (network building)

Session 1 - Questions

- How can we predict future radiocaesium migration?
- How can we reduce waste volume from decontamination activities?
- How to rationalise forest decontamination (covers ~70% of the Fukushima prefecture)
- How can international experience help deal with these difficulties?
- How do we gain public acceptance/confidence

Session 2 - Questions

- How do we provide a mechanistic understanding of Cs behaviour on RELEVANT environmental materials
- Relate this understanding to practical application in waste volume reduction and further decontamination work
- What international experience is available contribute to these difficulties

Session 3 - Questions

- How can we predict radiocaesium migration from forests
- What models are available?
- How do we test them?
- How do we validate them (much trickier)?
- What will Cs migration prediction contribute to e.g.
 - Rationalisation of forest decontamination?
 - Rationalisation of river, lake, reservoir decontamination?
 - Development of measures to prevent radiocaesium getting into agricultural irrigation water?
 - Future dose rate evaluation to predict return of residents from evacuated areas

Approach and tools

- 3 technical sessions with focused presentations by national / international experts
- Discussion / brainstorming to capture undocumented expertise, focused by use of an argumentation model (very intuitive, requires no preparation by participants)
- Field trip to allow foreign participants to gain insight into the research areas and encourage contacts between foreign experts and JAEA team
- Summarisation of output in a report produced quickly after the workshop